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Outline

• Purpose	of	linear	regression
• Simple	linear	regression	
• Model	formulation
• Methods	of	estimation
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Statistical	Learning

• Refers	to	a	vast	set	of	understanding	data

• Supervised	learning	– building	a	model	for	prediction	or	estimating	
an	output	based	on	one	or	more	inputs
e.g.,	Linear	Regression

• Unsupervised	learning	– there	are	inputs,	but	no	supervising	output
e.g.,	clustering

• Semi-supervised	learning – a	data	subset	contains	predictors	and	
response,	the	rest	does	not
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Linear	Regression

• Very	simple	approach	of	supervised	learning

• Somewhat	‘dull’	compared	to	other	fancy	methods,	but	still	useful		
for:

• Describing	associations	and	NOT	CAUSATION	between	predictors	(X)	and	
response/outcome	(Y)

• Predicting	a	quantitative	response	(how	precise	is	our	Y	estimate	for	a	given	
X?)

• Adjusting	– quantify	the	association	between	Y	and	a	main	predictor	X,	
adjusting	for	other	factors	(covariates)
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Linear	Regression

• Why	linear?	

• Outcome	(Y)	is	a	continuous	(dependent)	variable

• Predictor(s)	(X)	can	be	continuous	or	categorical	(independent)	
variable(s)

• Assumes	a	LINEAR	relationship	between	Y	and	X:	(approximately)	
straight	line

• Approximately?!	Well,	there	is	always	‘error’,	‘noise’,	or	‘unexplained	
variation’
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Linear	Regression

• What	do	(should)	we	want	to	know?

• Is	there	a	relationship	between	Y	and	X?	Is	it	linear?
• How	strong	is	the	relationship?	Can	we	predict	Y	with	a	high	level	of	
accuracy	or	the	prediction	is	only	slightly	better	than	a	random	guess?
• Which	predictor(s)	are	associated	with	Y?
• How	accurately	can	we	predict	future	outcome(s)?
• Is	there	any	synergy	(interaction	effect)	between	the	predictors?	
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Scatterplot	of	Y	vs.	X
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More	data	patterns
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Linear	Regression	- Graphics

• Usually	scatterplots	of	Y	vs.	(each)	X

• Before	estimation:

• Identify	the	pattern:	linear?,	multimodal?

• Notice	potential	usual	observations	(outliers)

• Other	graphical	displays:	histograms,	density	plots,	box-plots

9



Simple	Linear	Regression	(SLR)

• Only	one	predictor	X

• Basic	regression	model:

𝑌" = 𝛽% + 𝛽'𝑋" + 𝜀"
• 𝑌"	represents	the	response	variable	from	the	𝑖,- individual

• 𝛽%, 𝛽'	represent	the	model	parameters	to	be	estimated

• 𝑋" is	a	known	constant,	the	value	of	the	predictor	variable	from	the	𝑖,- individual

• 𝜀" represents	the	random	error	term,	described	by	a	probability	distribution
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Simple	Linear	Regression	(SLR)
• Basic	regression	model	is	said	to	be:

𝑌" = 𝛽% + 𝛽'𝑋" + 𝜀"

• Simple: there	is	only	one	predictor

• Linear	in	parameters: no	parameter	appears	as	an	exponent	or	is	
multiplied/divided	by	another	parameter

• Linear	in	the	predictor	variable: the	predictor	(X)	appears	only	in	the	first	
power
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SLR:	Assumptions

• Model	linear	in	parameters

• Attributes	of	error	terms	𝜀", 𝑖 = 1, 2,… , 𝑛:

• Mean	of	error	terms	is	0:	𝐸 𝜀" = 0

• Constant	variance:	𝜎6 𝜀" = 𝜎6

• Error	terms	are	uncorrelated:	𝑐𝑜𝑣 𝜀", 𝜀: = 𝜎 𝜀",𝜀: = 0 for	all	𝑖, 𝑗; 𝑖 ≠ 𝑗.

• (Normal)	distribution	of	the	errors	is	assumed	for	inferences
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Regression	Parameters
• 𝛽%, 𝛽' represent	the	model	coefficients	to	be	estimated

• 𝛽% is	the	𝑌 intercept	of	the	regression	line

• When	the	scope	of	the	model	includes	𝑋 = 0,	𝛽% gives	the	mean	value	of	
the	regression	function	at	𝑋 = 0.	Does	not	always	make	sense!

• 𝛽' is	the	slope	of	the	regression	line
• Expected	increase/decrease	in	𝑌 for	one	unit	increase	in	𝑋
• Expected	difference	in	𝑌	when	comparing	individuals	that	differ	by	one	unit	
or	category	(for	categorical	predictors)
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Estimation
• Given	a	dataset	composed	of	 𝑋", 𝑌" , 𝑖 = 1, 2,… , 𝑛 pairs

Find	the	‘best’	values	for	the	intercept	and	slope	of	the	linear	relationship.	

• One	option	is	to	use	the	mathematical	criterion	Least	Squares	(LS)
• Minimize	the	errors

• Minimize	the	vertical	distance	between	the	fitted	(estimated)	𝑌	values	and	
the	observed	data

• It	reduces	to	minimizing	the	criterion	denoted	by	𝑄:	

𝑄 =?(𝑌" − 𝛽% − 𝛽'𝑋")6
C

"D'
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LS	Estimation
• Minimize:

• Set	derivatives	to	0:	

• After	some	math,	get	the	system	of	normal	equations:
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LS	Estimation
• The	estimated	regression	model	is	given	by:

𝑌"E = 𝛽%F + 𝛽'F𝑋", 𝑖 = 1, 2,… , 𝑛.

• For	a	given	𝑖,- individual	we	have	the	following:
Observed	value	(obtained	from	the	model):	𝑌"
Fitted	value	(obtained	from	the	model):	𝑌"E
Residual:	𝑒" = 𝑌" − 𝑌"E

• Distinguish	between	the	model	error	term	value	𝜀" and	residual	𝑒":
𝜀" = 𝑌" − 𝐸 𝑌" 						vs						𝑒" = 𝑌" − 𝑌"E

Deviation	of	𝑌" from	the	TRUE	(unknown)	 regression	line						vs Deviation	of	𝑌" from	the	ESTIMATED	(known)	regression	line
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Residual	Variance	Estimation
• Error	sum	of	squares	or	residual	sum	of	squares:

𝑆𝑆𝐸 = ∑ (𝑌" − 𝑌"E)6= ∑ 𝑒"6C
"D'

C
"D'

• In	a	single	population	estimation,	we	divide	by	n-1	df to	estimate	the	
sample	variance.	Why	loose	2	df in	this	case?

𝑠6 = 𝑀𝑆𝐸 =
𝑆𝑆𝐸
𝑛 − 2

=
∑ 𝑒"6C
"D'
𝑛 − 2

• MSE is	also	called	mean	square	error	and	it	can	be	shown	that:

𝐸 𝑀𝑆𝐸 = 𝜎6.
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Readings

Kutner et	al.,	Applied	Linear	Statistical	Models

• Chapter	1,	Sections:	1.1	– 1.7

Next	class:

• Properties	of	model	coefficients:	expected	values	and	variance	estimates
• Matrix	notation
• Beyond	LS	estimation		- maximum	likelihood	(ML)	estimation


