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Outline

* Purpose of linear regression
* Simple linear regression
* Model formulation

e Methods of estimation



Statistical Learning

» Refers to a vast set of understanding data

e Supervised learning — building a model for prediction or estimating

an output based on one or more inputs
e.g., Linear Regression

* Unsupervised learning — there are inputs, but no supervising output
e.g., clustering

* Semi-supervised learning — a data subset contains predictors and
response, the rest does not



Linear Regression

* Very simple approach of supervised learning

 Somewhat ‘dull’ compared to other fancy methods, but still useful
for:

e Describing associations and NOT CAUSATION between predictors (X) and
response/outcome (Y)

* Predicting a quantitative response (how precise is our Y estimate for a given
X?)

* Adjusting — quantify the association between Y and a main predictor X,
adjusting for other factors (covariates)



Linear Regression

* Why linear?
* Outcome (Y) is a continuous (dependent) variable

* Predictor(s) (X) can be continuous or categorical (independent)
variable(s)

* Assumes a LINEAR relationship between Y and X: (approximately)
straight line

* Approximately?! Well, there is always ‘error’, ‘noise’, or ‘unexplained
variation’



Linear Regression

* What do (should) we want to know?

* |s there a relationship between Y and X? Is it linear?

How strong is the relationship? Can we predictY with a high level of
accuracy or the predictionis only slightly better than a random guess?
Which predictor(s) are associated with Y?

How accurately can we predict future outcome(s)?

Is there any synergy (interaction effect) between the predictors?
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More data patterns
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Linear Regression - Graphics

e Usually scatterplots of Y vs. (each) X
* Before estimation:
 |dentify the pattern: linear?, multimodal?
* Notice potential usual observations (outliers)

e Other graphical displays: histograms, density plots, box-plots



Simple Linear Regression (SLR)

* Only one predictor X
* Basic regression model:
Y; = fo + 51X + &
* Y; represents the response variable from the it" individual
* (o, 1 represent the model parameters to be estimated

* X; is a known constant, the value of the predictor variable from the i*" individual

* &; represents the random error term, described by a probability distribution



Simple Linear Regression (SLR)

* Basic regression model is said to be:
Y; = fo + b1 Xi + &

* Simple: there is only one predictor

* Linear in parameters: no parameter appears as an exponentor is
multiplied/divided by another parameter

* Linear in the predictor variable: the predictor (X) appears only in the first
power
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SLR: Assumptions

* Model linear in parameters

* Attributes of errorterms ¢;,i = 1,2, ..., n:
* Mean of error terms is0: E(g;) = 0
* Constantvariance: 0%(g;) = o2

* Error terms are uncorrelated: cov(ei,ej) = a(ei,ej) = Oforalli,j;i #j.

* (Normal) distribution of the errors is assumed for inferences



Regression Parameters

* By, B represent the model coefficients to be estimated
* By is the Y intercept of the regression line

* When the scope of the model includesX = 0, 3, gives the mean value of
the regression function at X = 0. Does not always make sense!

* (3, is the slope of the regression line
* Expected increase/decrease in Y for one unitincrease in X

* Expected difference in Y when comparing individualsthat differ by one unit
or category (for categorical predictors)



Estimation

* Given a dataset composed of (X;,Y;),i = 1,2, ...,n pairs

Find the ‘best’ values for the intercept and slope of the linear relationship.

* One option is to use the mathematical criterion Least Squares (LS)
* Minimize the errors

 Minimize the vertical distance between the fitted (estimated) Y values and
the observed data

* |t reducesto minimizingthencriterion denoted by Q:

Q=) (% —fo— FiXy)?
=1
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LS Estimation

* Minimize: Q=S(Yi—/30—/31Xi)2
99 =0 and — 0 _
Py B

* After some math, get the system of normal equations:

EY nﬁo"'ﬁlzx /3)0 =Y_[§IX

(X, -X)V.-7) 3 XY, -nXV
EXY ﬁOEX +/512X B =S =El : _El

e Set derivatives to O:

= —

S

Sxx N (X, - X ) ixf -nX’
i=l1 i=1



LS Estimation

* The estimated regression model is given by:
V. =B, + B X;,i=1,2,..,n

* For a given it" individual we have the following:
Observed value (obtained from the model): Y;
Fitted value (obtained from the model): ¥,
Residual: e; = V; — Y,
* Distinguish between the model errorterm value ¢; and residual e;:
l

g =Y, —E(Y) vs e=Y,—F,

Deviation of Y; from the TRUE (unknown) regressionline vs Deviation of Y; from the ESTIMATED (known) regression line
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Residual Variance Estimation

* Error sum of squares or residual sum of squares:
_— \'n V2 _ N 2
SSE =Y (Y, —¥)?=3" ¢,

* In a single population estimation, we divide by n-1 df to estimate the
sample variance. Why loose 2 df in this case?

SSE n o e?
2 = MSE = ==
> n—2 n—2

* MSE is also called mean square error and it can be shown that:

E(MSE) = o2.



Readings

Kutner et al., Applied Linear Statistical Models
* Chapter 1, Sections: 1.1 -1.7

Next class:

* Properties of model coefficients: expected values and variance estimates

* Matrix notation
* Beyond LS estimation - maximum likelihood (ML) estimation



