P8130: Biostatistical Methods I Lecture 15: Multiple Linear Regression

Cody Chiuzan, PhD Department of Biostatistics Mailman School of Public Health (MSPH)

Recap

- Lecture 14 presented 'Inferences in SLR'
 - Hypothesis testing for slope (and intercept)
 - Confidence and prediction intervals
 - Confidence interval (CI): inference on a parameter, range meant to cover the value of the parameter.
 - Prediction interval (PI): a range of values to be taken by a random variable (wider than CI)
 - Correlation (strength of the association) vs slope (rate of change)
 - Coefficient of determination: $r^2 = \frac{SSR}{SSTO} = 1 \frac{SSE}{SSTO}$

Recap

Partitioning the Sum of Squares

- Analysis of variance (ANOVA) vs Regression (practically the same)
- ANOVA results generalize immediately to multiple linear regression

Source of Variation	SS	df	MS	$E\{MS\}$
Regression	$SSR = \Sigma (\hat{Y}_i - \overline{Y})^2$	1	$MSR = \frac{SSR}{1}$	$\sigma^2 + \beta_1^2 \Sigma (X_i - \overline{X})^2$
Error	$SSE = \Sigma (Y_i - \hat{Y}_i)^2$	n-2	$MSE = \frac{SSE}{n-2}$	σ^2
Total	$SSTO = \Sigma (Y_i - \overline{Y})^2$	n-1		

ANOVA table for Simple Linear Regression

Multiple Linear Regression (MLR)

- Allows inferences about the relationship between the outcome (Y) and a predictor (X), <u>while adjusting for other predictors (covariates)</u>
- Used to control/account for confounding and extremely useful in observational studies
- A consequence of not adjusting: the estimated coefficients corresponding to a certain predictor might be <u>biased</u>

Estimation Bias

- Let us assume that you have two predictors X_1 and X_2 , but you are interested primarily in the <u>relationship between Y and X_1 </u>.
- Should you fit a regression model including only X_1 or $(X_1 and X_2)$?
- It depends:
 - The 'bias' is a function of correlation between the two covariates
 - If the correlation is high -> bias will be high
 - If the correlation is small -> bias will be small
 - If small or zero correlation, then no need to adjust for X_2

MLR: Motivation

- Definitely more realistic than SLR
- Can fit multiple predictors of different types (continuous and categorical)
- Improvement in estimation
- Allows testing of multiple effects and their interaction(s)

MLR: Formulation

- Data are observed from *n* subjects: $(Y_i, X_{i1}, X_{i2}, \dots, X_{ip})$ for $i = 1, 2, \dots, n$.
- The MLR model is given by:

$$Y_i = \beta_0 + \beta_1 X_{i1} + \beta_2 X_{i2} + \cdots + \beta_p X_{ip} + \varepsilon_i, \varepsilon_i \sim N(0, \sigma^2).$$

- Same assumptions as in SLR:
 - Uncorrelated error terms with mean 0 and constant variance (i.i.d.)
 - Linearity in parameters (p predictors, p+1 parameters why?)
- How to we find the model estimates?
 - Least Squares and Maximum Likelihood Methods

MLR: Matrix Notation

- The general form of a linear model is given by: $\tilde{Y} = \mathbf{X}\tilde{\beta} + \tilde{\varepsilon}$
- Where \tilde{Y} is the $N \times 1$ vector of observed responses **X** is the $N \times (p + 1)$ design matrix of fixed constants $\tilde{\beta}$ is the $(p + 1) \times 1$ vector of fixed, but unknown parameters $\tilde{\varepsilon}$ is the $N \times 1$ vector of (unobserved) errors
- In this formulation, *p* denotes the number of predictors.

MLR: Interpretation(s)

- In multiple linear regression, each model coefficient still shows the difference/change in the expected outcome, but ...
- '<u>Adjusted for</u>' or '<u>Controlling for</u>' or '<u>Holding all other variables constant</u>'
- It is imperative that your interpretation includes one of the phrases above.

MLR Interpretation: Example

MLR using two covariates: BEDS and INFRISK (data 'Hospital.csv')

Im(formula = data_hosp\$LOS ~ data_hosp\$BEDS + data_hosp\$INFRISK)

Coefficients:

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	6.2703521	0.5038751	12.444	< 2e-16 ***
data_hosp\$BEDS	0.0024747	0.0008236	3.005	0.00329 **
data_hosp\$INFRISK	0.6323812	0.1184476	5.339	5.08e-07 ***

Residual standard error: 1.568 on 110 degrees of freedom Multiple R-squared: 0.3388, Adjusted R-squared: 0.3268 F-statistic: 28.19 on 2 and 110 DF, p-value: 1.31e-10

MLR Interpretation: Example

• Write the fitted line equation:

• Interpret the coefficient corresponding to predictor BEDS

• Calculate and compare the LOS for two hospitals with 400 and 500 beds ...

MLR: Other Type of Predictors

- MLR accommodates not only continuous predictors but also:
 - Categorical (e.g., Gender, Treatment Arms)
 - Ordinal (e.g., Disease Severity/Status)
- If only one predictor and it is categorical, then we have a ONE-WAY ANOVA
- In regression, categorical variables are modeled using dummy or indicator variables.

Indicator Variables

• The indicator or 'dummy' variable is defined as:

I(condition) = 1, if condition is TRUE

I(condition) = 0, if condition is FALSE

• For example, let us take variable GENDER:

I(gender) = 1, if male is TRUE I(gender) = 0, if male is FALSE

- Notice that indicator variables only take values 0 and 1.
- The number of indicator variables is always *p*-1, where *p* represents the number of levels for the qualitative predictor

Indicator Variables

- In a clinical trial, let variable TREATMENT have 4 levels corresponding to the number of treatment arms:
 - 'Placebo', 'Chemotherapy', 'Immuno Agent', 'Chemotherapy + Immuno Agent'
- Regression will use 3 dummy variables to model TREATMENT

Treatment	I ₁	I ₂	l ₃
Placebo	0	0	0
Immuno	1	0	0
Chemo	0	1	0
Immuno + Chemo	0	0	1

• Placebo is considered the reference category (not accounted for?)

Indicator Variables

- The regression model for the clinical trial example will change to: $E(Y) = \beta_0 + \beta_1 I(Trt = Immuno) + \beta_2 I(Trt = Chemo) + \beta_3 I(Trt = Combo)$ E(Y|Trt = Immuno) = E(Y|Trt = Chemo) = E(Y|Trt = Combo) = E(Y|Trt = Placebo) =
- R will generate results for each level of the categorical predictor vs the reference category
- What if we want an overall (general) test for the Treatment variable?

MLR Categorical Predictors: Matrix Notation

• Using the same clinical trial example with 4 treatment arms, write the matrix formulation for the regression model:

$$\tilde{Y} = \mathbf{X}\tilde{\beta} + \tilde{\varepsilon}$$

- What are the dimensions of each vector/matrix?
- What are the components of each vector/matrix?

MLR: R Practice

- Fit MLR with continuous/categorical predictors
- Compare the 'intercept' vs 'no intercept' models with categorical predictors
- Change the reference category for categorical predictors
- ANOVA 'general test' for a categorical predictor

- Interactions can be formed between:
 - Two continuous predictors (difficult to interpret)
 - Continuous x categorical
 - Categorical x categorical
 - Etc.
- Most common are two-way interactions, but three-, four-way interactions are also possible (Don't!)
- <u>Interaction</u>: the effect of one independent predictor on the dependent variable depends on the values of another independent predictor (two-way interaction).

- Suppose that we want to test if the effect of X_1 on Y is different with respect to the levels of X_2
- We can we fit separate regression models for each level category of X₂.
 OR
- Add interaction effects to the model.
- Careful: if the interaction term is significant, then you CANNOT assess the main effects separately
 - You can estimate the response for different predictor values, but the interaction term needs to be taken into consideration.

• Indication of interaction: Unparallel slopes

- Model interactions
 - If the interaction term is NOT significant, remove it and re-fit the model only with the main effects
 - If the interaction term is significant, you can only calculate the estimated Ys, taking into account the interaction term
- Again, let us consider the clinical trial example with TREATMENT, GENDER and their interaction, i.e., the *Saturated Model*:

$$\begin{split} E(Y) &= \beta_0 + \beta_1 I(Trt = Immuno) + \beta_2 I(Trt = Chemo) + \beta_3 I(Trt = Combo) + \\ \beta_4 I(Gender = Male) + \beta_5 I(Gender = Male) \cdot I(Trt = Immuno) + \\ \beta_6 I(Gender = Male) \cdot I(Trt = Chemo) + \beta_7 I(Gender = Male) \cdot I(Trt = Combo) \end{split}$$

• What is the expected response for a male subject treated with chemo?

Kutner et al., Applied Linear Statistical Models

- Chapter 6, Sections: 6.1 6.5
- Chapter 8, Sections: 8.3 8.5