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Recap

e Lecture 14 presented ‘Inferences in SLR’
e Hypothesis testing for slope (and intercept)
e Confidence and prediction intervals

e Confidence interval (Cl): inference on a parameter, range meant to cover the value of the
parameter.

e Prediction interval (Pl): a range of values to be taken by a random variable (wider than Cl)

e Correlation (strength of the association) vs slope (rate of change)

5 __ SSR SSE

e Coefficient of determination: r —=1-—
SSTO SSTO



Recap

e Partitioning the Sum of Squares:

S55TO = SSR + SSE

;m - 7>2=;<2 —7)2+ ;m — 7,2

SSR =Y(5: - 7)*




Partitioning the Sum of Squares

* Analysis of variance (ANOVA) vs Regression (practically the same)
 ANOVA results generalize immediately to multiple linear regression

ANOVA table for Simple Linear Regression

Source of

Variation %Y df MS E{MS}
Regression  SSR = X(¥; — ¥)? I MSR = S"STR o2 + B2B(X; — X)?
Error SSE=%(Y, - ¥, n-2 MSE=3E o

Total SSTO=X%(Y; = Y)> n-—1




Multiple Linear Regression (MLR)

e Allows inferences about the relationship between the outcome (Y) and
a predictor (X), while adjusting for other predictors (covariates)

e Used to control/account for confounding and extremely useful in
observational studies

* A consequence of not adjusting: the estimated coefficients
corresponding to a certain predictor might be biased




Estimation Bias

e Let us assume that you have two predictors X;and X,, but you are
interested primarily in the relationship between Y and X;.

 Should you fit a regression model including only X; or (X;and X,)?

* |t depends:
 The ‘bias’ is a function of correlation between the two covariates
* |f the correlation is high -> bias will be high
e |f the correlation is small -> bias will be small

 If small or zero correlation, then no need to adjust for X,



MLR: Motivation

* Definitely more realistic than SLR
e Can fit multiple predictors of different types (continuous and categorical)
* Improvement in estimation

e Allows testing of multiple effects and their interaction(s)



MLR: Formulation

* Data are observed from n subjects: (V;, X;q, Xi2, ..., Xjp) fori = 1,2, ..., n.
* The MLR model is given by:
Y; = Bo + B1Xi1 + B Xip + -+ BpXip + €1, €,~N(0,0%).
e Same assumptions as in SLR:
e Uncorrelated error terms with mean 0 and constant variance (i.i.d.)

e Linearity in parameters (p predictors, p+1 parameters — why?)

* How to we find the model estimates?
e Least Squares and Maximum Likelihood Methods



MLR: Matrix Notation

* The general form of a linear model is given by:
Y =XB + ¢

e Where Y is the N X 1 vector of observed responses
Xisthe N X (p + 1) design matrix of fixed constants
B is the (» + 1) X 1 vector of fixed, but unknown parameters
£isthe N X 1 vector of (unobserved) errors

* In this formulation, p denotes the number of predictors.



MLR: Interpretation(s)

* In multiple linear regression, each model coefficient still shows the
difference/change in the expected outcome, but ...

e ‘Adjusted for’ or ‘Controlling for or ‘Holding all other variables constant’

* It is imperative that your interpretation includes one of the phrases
above.



MLR Interpretation: Example

MLR using two covariates: BEDS and INFRISK (data ‘Hospital.csv’)

Im(formula = data_hospSLOS ~ data_hospSBEDS + data_hospSINFRISK)

Coefficients:
Estimate  Std. Error tvalue Pr(>|t])

(Intercept) 6.2703521 0.5038751 12.444 < 2e-16 ***
data_hospSBEDS  0.0024747 0.0008236 3.005 0.00329 **
data_hospSINFRISK 0.6323812 0.1184476 5.339 5.08e-07 ***

Residual standard error: 1.568 on 110 degrees of freedom
Multiple R-squared: 0.3388, Adjusted R-squared: 0.3268
F-statistic: 28.19 on 2 and 110 DF, p-value: 1.31e-10



MLR Interpretation: Example

e Write the fitted line equation:

 |Interpret the coefficient corresponding to predictor BEDS

e Calculate and compare the LOS for two hospitals with 400 and 500 beds ...
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VILR: Other Type of Predictors

 MLR accommodates not only continuous predictors but also:
e Categorical (e.g., Gender, Treatment Arms)

e Ordinal (e.g., Disease Severity/Status)
* If only one predictor and it is categorical, then we have a ONE-WAY ANOVA

* In re%rlession, categorical variables are modeled using dummy or indicator
variables.



Indicator Variables

* The indicator or ‘dummy’ variable is defined as:
I(condition) = 1, if condition is TRUE
I(condition) = O, if condition is FALSE
* For example, let us take variable GENDER:
I(gender) = 1, if male is TRUE
I(gender) = 0, if male is FALSE
* Notice that indicator variables only take values 0 and 1.

* The number of indicator variables is always p-1, where p represents the
number of levels for the qualitative predictor



Indicator Variables

* In a clinical trial, let variable TREATMENT have 4 levels corresponding to
the number of treatment arms:
e ‘Placebo’, ‘Chemotherapy’, Iimmuno Agent’, ‘Chemotherapy + Immuno Agent’

e Regression will use 3 dummy variables to model TREATMENT

——
[y
—
N
——
w

Treatment

Placebo 0 0 0
Immuno 1 0 0
Chemo 0 1 0
Immuno + Chemo 0 0 1

e Placebo is considered the reference category (not accounted for?)



Indicator Varia

nles

* The regression mode
E(Y)=pBy+ [1I(Trt
E(Y|Trt = Immuno)
E(Y|Trt = Chemo) =
E(Y|Trt = Combo) =

for the clinical trial example will change to:

E(Y|Trt = Placebo) =

Immuno) + B,1(Trt = Chemo) + 3 I(Trt = Combo)

* R will generate results for each level of the categorical predictor vs the reference

category

 What if we want an overall (general) test for the Treatment variable?



MLR Categorical Predictors: Matrix Notation

e Using the same clinical trial example with 4 treatment arms, write the matrix
formulation for the regression model:

Y =X+ ¢
 What are the dimensions of each vector/matrix?

* What are the components of each vector/matrix?



MLR: R Practice

e Fit MLR with continuous/categorical predictors
e Compare the ‘intercept’ vs ‘no intercept’ models with categorical predictors
* Change the reference category for categorical predictors

e ANOVA ‘general test’ for a categorical predictor
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MLR: Interactions

* |nteractions can be formed between:
e Two continuous predictors (difficult to interpret)
e Continuous x categorical
e Categorical x categorical
* Etc.

e Most common are two-way interactions, but three-, four-way interactions are also
possible (Don’t!)

e |nteraction: the effect of one independent predictor on the dependent variable
depends on the values of another independent predictor (two-way interaction).




MLR: Interactions

e Suppose that we want to test if the effect of X;0on Y is different with
respect to the levels of X,

e \We can we fit separate regression models for each level category of X,.
OR
* Add interaction effects to the model.

e Careful: if the interaction term is significant, then you CANNOT assess the
main effects separately

* You can estimate the response for different predictor values, but the interaction
term needs to be taken into consideration.



MLR: Interactions

* Indication of interaction: Unparallel slopes

10.0 =

0.0 =
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MLR: Interactions

* Model interactions

 |f the interaction term is NOT significant, remove it and re-fit the model only with
the main effects

 |f the interaction term is significant, you can only calculate the estimated Ys, taking
into account the interaction term

e Again, let us consider the clinical trial example with TREATMENT, GENDER and their
interaction, i.e., the Saturated Model:

E(Y) =By + B11(Trt = Immuno) + B,I1(Trt = Chemo) + B3 I(Trt = Combo) +
Bsl(Gender = Male) + Bs1(Gender = Male) - I(Trt = Immuno) +
Bel(Gender = Male) - I(Trt = Chemo) + B,1(Gender = Male) - I(Trt = Combo)

 What is the expected response for a male subject treated with chemo?



Readings

Kutner et al., Applied Linear Statistical Models

e Chapter 6, Sections: 6.1 — 6.5

e Chapter 8, Sections: 8.3 — 8.5
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