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Recap
• Lecture 14 presented ‘Inferences in SLR’

• Hypothesis testing for slope (and intercept)

• Confidence and prediction intervals

• Confidence interval (CI): inference on a parameter, range meant to cover the value of the 
parameter.

• Prediction interval (PI): a range of values to be taken by a random variable (wider than CI)

• Correlation (strength of the association) vs slope (rate of change)

• Coefficient of determination: 𝑟𝑟2 = 𝑆𝑆𝑆𝑆𝑆𝑆
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆

= 1 − 𝑆𝑆𝑆𝑆𝑆𝑆
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆
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Recap
• Partitioning the Sum of Squares:

SSTO = SSR + SSE
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Partitioning the Sum of Squares
• Analysis of variance (ANOVA) vs Regression (practically the same)
• ANOVA results generalize immediately to multiple linear regression 

ANOVA table for Simple Linear Regression 
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Multiple Linear Regression (MLR)
• Allows inferences about the relationship between the outcome (Y) and 

a predictor (X), while adjusting for other predictors (covariates)

• Used to control/account for confounding and extremely useful in 
observational studies

• A consequence of not adjusting: the estimated coefficients 
corresponding to a certain predictor might be biased
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Estimation Bias
• Let us assume that you have two predictors 𝑋𝑋1and 𝑋𝑋2, but you are 

interested primarily in the relationship between 𝑌𝑌 and 𝑋𝑋1.

• Should you fit a regression model including only 𝑋𝑋1 or (𝑋𝑋1𝑎𝑎𝑎𝑎𝑎𝑎 𝑋𝑋2)?

• It depends:
• The ‘bias’ is a function of correlation between the two covariates
• If the correlation is high -> bias will be high
• If the correlation is small -> bias will be small

• If small or zero correlation, then no need to adjust for 𝑋𝑋2
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MLR: Motivation
• Definitely more realistic than SLR

• Can fit multiple predictors of different types (continuous and categorical)

• Improvement in estimation

• Allows testing of multiple effects and their interaction(s)
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MLR: Formulation
• Data are observed from n subjects: (𝑌𝑌𝑖𝑖 ,𝑋𝑋𝑖𝑖1,𝑋𝑋𝑖𝑖2, … ,𝑋𝑋𝑖𝑖𝑝𝑝) for 𝑖𝑖 = 1, 2, … ,𝑎𝑎.

• The MLR model is given by:

𝑌𝑌𝑖𝑖 = 𝛽𝛽0 + 𝛽𝛽1𝑋𝑋𝑖𝑖1 + 𝛽𝛽2𝑋𝑋𝑖𝑖2 + ⋯𝛽𝛽𝑝𝑝𝑋𝑋𝑖𝑖𝑝𝑝 + 𝜀𝜀𝑖𝑖 , 𝜀𝜀𝑖𝑖~𝑁𝑁(0,𝜎𝜎2).

• Same assumptions as in SLR:
• Uncorrelated error terms with mean 0 and constant variance (i.i.d.)
• Linearity in parameters (p predictors, p+1 parameters – why?)

• How to we find the model estimates?
• Least Squares and Maximum Likelihood Methods
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MLR: Matrix Notation
• The general form of a linear model is given by:

�𝑌𝑌 = 𝐗𝐗 �𝛽𝛽 + ̃𝜀𝜀

• Where  �𝑌𝑌 is the 𝑁𝑁 × 1 vector of observed responses
𝐗𝐗 is the 𝑁𝑁 × (𝑝𝑝 + 1) design matrix of fixed constants 
�𝛽𝛽 is the (𝑝𝑝 + 1) × 1 vector of fixed, but unknown parameters
̃𝜀𝜀 is the 𝑁𝑁 × 1 vector of (unobserved) errors

• In this formulation, 𝑝𝑝 denotes the number of predictors.
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MLR: Interpretation(s)
• In multiple linear regression, each model coefficient still shows the 

difference/change in the expected outcome, but …

• ‘Adjusted for’ or ‘Controlling for’ or ‘Holding all other variables constant’

• It is imperative that your interpretation includes one of the phrases 
above.
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MLR Interpretation: Example
MLR using two covariates: BEDS and INFRISK (data ‘Hospital.csv’)

lm(formula = data_hosp$LOS ~ data_hosp$BEDS + data_hosp$INFRISK)

Coefficients:
Estimate       Std. Error t value Pr(>|t|)

(Intercept) 6.2703521   0.5038751   12.444   < 2e-16 ***
data_hosp$BEDS 0.0024747   0.0008236   3.005     0.00329 **
data_hosp$INFRISK 0.6323812   0.1184476   5.339     5.08e-07 ***
---
Residual standard error: 1.568 on 110 degrees of freedom
Multiple R-squared: 0.3388, Adjusted R-squared: 0.3268
F-statistic: 28.19 on 2 and 110 DF, p-value: 1.31e-10
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MLR Interpretation: Example
• Write the fitted line equation:

• Interpret the coefficient corresponding to predictor BEDS 

• Calculate and compare the LOS for two hospitals with 400 and 500 beds …
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MLR: Other Type of Predictors
• MLR accommodates not only continuous predictors but also:

• Categorical (e.g., Gender, Treatment Arms)

• Ordinal (e.g., Disease Severity/Status)

• If only one predictor and it is categorical, then we have a ONE-WAY ANOVA

• In regression, categorical variables are modeled using dummy or indicator 
variables.
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Indicator Variables
• The indicator or ‘dummy’ variable is defined as: 

I(condition) = 1, if condition is TRUE 
I(condition) = 0, if condition is FALSE 

• For example, let us take variable GENDER: 
I(gender) = 1, if male is TRUE 
I(gender) = 0, if male is FALSE 

• Notice that indicator variables only take values 0 and 1. 
• The number of indicator variables is always p-1, where p represents the 

number of levels for the qualitative predictor
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Indicator Variables
• In a clinical trial, let variable TREATMENT have 4 levels corresponding to 

the number of treatment arms: 
• ‘Placebo’, ‘Chemotherapy’, ‘Immuno Agent’, ‘Chemotherapy + Immuno Agent’ 

• Regression will use 3 dummy variables to model TREATMENT 

• Placebo is considered the reference category (not accounted for?)
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Treatment II1 II2 I3

Placebo 0 0 0

Immuno 1 0 0

Chemo 0 1 0

Immuno + Chemo 0 0 1



Indicator Variables
• The regression model for the clinical trial example will change to:

𝐸𝐸 𝑌𝑌 = 𝛽𝛽0 + 𝛽𝛽1𝐼𝐼 𝑇𝑇𝑟𝑟𝑇𝑇 = 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑎𝑎𝐼𝐼 + 𝛽𝛽2𝐼𝐼 𝑇𝑇𝑟𝑟𝑇𝑇 = 𝐶𝐶𝐶𝐶𝐶𝐼𝐼𝐼𝐼 + 𝛽𝛽3 𝐼𝐼 𝑇𝑇𝑟𝑟𝑇𝑇 = 𝐶𝐶𝐼𝐼𝐼𝐼𝐶𝐶𝐼𝐼

𝐸𝐸 𝑌𝑌|𝑇𝑇𝑟𝑟𝑇𝑇 = 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑎𝑎𝐼𝐼 =
𝐸𝐸 𝑌𝑌|𝑇𝑇𝑟𝑟𝑇𝑇 = 𝐶𝐶𝐶𝐶𝐶𝐼𝐼𝐼𝐼 =
𝐸𝐸 𝑌𝑌|𝑇𝑇𝑟𝑟𝑇𝑇 = 𝐶𝐶𝐼𝐼𝐼𝐼𝐶𝐶𝐼𝐼 =

𝐸𝐸 𝑌𝑌|𝑇𝑇𝑟𝑟𝑇𝑇 = 𝑃𝑃𝑃𝑃𝑎𝑎𝑃𝑃𝐶𝐶𝐶𝐶𝐼𝐼 =

• R will generate results for each level of the categorical predictor vs the reference 
category

• What if we want an overall (general) test for the Treatment variable?
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MLR Categorical Predictors: Matrix Notation
• Using the same clinical trial example with 4 treatment arms, write the matrix 

formulation for the regression model:
�𝑌𝑌 = 𝐗𝐗 �𝛽𝛽 + ̃𝜀𝜀

• What are the dimensions of each vector/matrix?

• What are the components of each vector/matrix?
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MLR: R Practice
• Fit MLR with continuous/categorical predictors

• Compare the ‘intercept’ vs ‘no intercept’ models with categorical predictors

• Change the reference category for categorical predictors

• ANOVA ‘general test’ for a categorical predictor
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MLR: Interactions
• Interactions can be formed between:

• Two continuous predictors (difficult to interpret)
• Continuous x categorical
• Categorical x categorical
• Etc.

• Most common are two-way interactions, but three-, four-way interactions are also 
possible (Don’t!)

• Interaction: the effect of one independent predictor on the dependent variable 
depends on the values of another independent predictor (two-way interaction). 
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MLR: Interactions
• Suppose that we want to test if the effect of 𝑋𝑋1on 𝑌𝑌 is different with 

respect to the levels of 𝑋𝑋2
• We can we fit separate regression models for each level category of 𝑋𝑋2.

OR
• Add interaction effects to the model.
• Careful: if the interaction term is significant, then you CANNOT assess the 

main effects separately
• You can estimate the response for different predictor values, but the interaction 

term needs to be taken into consideration. 
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MLR: Interactions
• Indication of interaction: Unparallel slopes
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MLR: Interactions
• Model interactions 

• If the interaction term is NOT significant, remove it and re-fit the model only with 
the main effects 

• If the interaction term is significant, you can only calculate the estimated Ys, taking 
into account the interaction term 

• Again, let us consider the clinical trial example with TREATMENT, GENDER and their 
interaction, i.e., the Saturated Model: 

𝐸𝐸 𝑌𝑌 = 𝛽𝛽0 + 𝛽𝛽1𝐼𝐼 𝑇𝑇𝑟𝑟𝑇𝑇 = 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑎𝑎𝐼𝐼 + 𝛽𝛽2𝐼𝐼 𝑇𝑇𝑟𝑟𝑇𝑇 = 𝐶𝐶𝐶𝐶𝐶𝐼𝐼𝐼𝐼 + 𝛽𝛽3 𝐼𝐼 𝑇𝑇𝑟𝑟𝑇𝑇 = 𝐶𝐶𝐼𝐼𝐼𝐼𝐶𝐶𝐼𝐼 +
𝛽𝛽4𝐼𝐼 𝐺𝐺𝐶𝐶𝑎𝑎𝑎𝑎𝐶𝐶𝑟𝑟 = 𝑀𝑀𝑎𝑎𝑃𝑃𝐶𝐶 + 𝛽𝛽5𝐼𝐼 𝐺𝐺𝐶𝐶𝑎𝑎𝑎𝑎𝐶𝐶𝑟𝑟 = 𝑀𝑀𝑎𝑎𝑃𝑃𝐶𝐶 � 𝐼𝐼 𝑇𝑇𝑟𝑟𝑇𝑇 = 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑎𝑎𝐼𝐼 +
𝛽𝛽6𝐼𝐼 𝐺𝐺𝐶𝐶𝑎𝑎𝑎𝑎𝐶𝐶𝑟𝑟 = 𝑀𝑀𝑎𝑎𝑃𝑃𝐶𝐶 � 𝐼𝐼 𝑇𝑇𝑟𝑟𝑇𝑇 = 𝐶𝐶𝐶𝐶𝐶𝐼𝐼𝐼𝐼 + 𝛽𝛽7𝐼𝐼 𝐺𝐺𝐶𝐶𝑎𝑎𝑎𝑎𝐶𝐶𝑟𝑟 = 𝑀𝑀𝑎𝑎𝑃𝑃𝐶𝐶 � 𝐼𝐼 𝑇𝑇𝑟𝑟𝑇𝑇 = 𝐶𝐶𝐼𝐼𝐼𝐼𝐶𝐶𝐼𝐼

• What is the expected response for a male subject treated with chemo?
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Readings

Kutner et al., Applied Linear Statistical Models

• Chapter 6, Sections: 6.1 – 6.5

• Chapter 8, Sections: 8.3 – 8.5
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