
P8130: Biostatistical Methods I
Lecture 16: Multiple Linear Regression

ANOVA Testing 

Cody Chiuzan, PhD
Department of Biostatistics
Mailman School of Public Health (MSPH)

1



Recap from Lecture 15
• Multiple Linear Regression

• Continuous and categorical predictors

• Interaction terms

• Today’s Outline:
• ANOVA tables and F-tests 

• Testing several coefficients simultaneously

• Comparing ‘nested’ models

• Adjusted and partial R2
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Partitioning the Sum of Squares
• Analysis of variance (ANOVA) vs Regression (practically the same)
• ANOVA results generalize immediately to multiple linear regression 

ANOVA table for Simple Linear Regression
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ANOVA table for MLR
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• p represents the number of predictors
• Note: the mean square errors are not additive


		Source of

Variation

		SS

		df

		MS

		F



		Regression

		

SSR=

		p

		MSR=SSR/p

		MSR/MSE



		Error

		

SSE=

		n-(p+1)

		MSE=SSE/(n-p-1)

		



		Total

		

SSTO=

		n-1
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ANOVA in SLR
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• In SLR, testing that:
𝐻𝐻0: 𝛽𝛽1 = 0
𝐻𝐻1: 𝛽𝛽1 ≠ 0

• Test statistics: 𝐹𝐹∗ = 𝑀𝑀𝑀𝑀𝑀𝑀/𝑀𝑀𝑀𝑀𝑀𝑀 ∼ 𝐹𝐹(1,𝑛𝑛 − 2)
• Reject 𝐻𝐻0, if 𝐹𝐹∗ > 𝐹𝐹(1 − 𝛼𝛼,𝑛𝑛 − 2)
• Fail to Reject 𝐻𝐻0, if 𝐹𝐹∗ ≤ 𝐹𝐹 1 − 𝛼𝛼,𝑛𝑛 − 2

• In SLR (df=1), the F-test and the t-test are equivalent: 𝑡𝑡2 = 𝐹𝐹.



ANOVA in MLR
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• Focuses on two types of F-tests.
• Global (overall) F-test: is there a relationship between Y and the set of 

covariates:
𝐻𝐻0: 𝛽𝛽1 = 𝛽𝛽2 = ⋯ = 𝛽𝛽𝑝𝑝 = 0
𝐻𝐻1: at least one 𝛽𝛽 is not zero

• Test statistic: 𝐹𝐹∗ = MSR
MSE

> F(1 − α;𝑝𝑝,𝑛𝑛 − 𝑝𝑝 − 1), reject 𝐻𝐻0
• The null model contains only the intercept:

𝐹𝐹∗= MSR
MSE

≤ F(1 − α;𝑝𝑝,𝑛𝑛 − 𝑝𝑝 − 1), fail reject 𝐻𝐻0



ANOVA in MLR

7

• ‘Partial’ F-test; more interesting if you want to test if ‘some’ coefficients are 
zero at the same time

• Example:

𝐻𝐻0: 𝛽𝛽3 = 𝛽𝛽4 = 0

𝐻𝐻1: 𝛽𝛽3 ≠ 0 OR 𝛽𝛽4 ≠ 0

• Or even a single coefficient:
𝐻𝐻0: 𝛽𝛽3 = 0

𝐻𝐻1: 𝛽𝛽3 ≠ 0



ANOVA in MLR
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• When using ANOVA for MLR, the order of the terms does matter.

• In ANOVA, the test (p-value) for a certain term is conditioned
for everything else above.  

• In regression, these are conditioned 
for everything else that is in the model. 



ANOVA in MLR
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• Use ANOVA to test a covariate, adjusting for some, but not other 
covariates.

• If you want to use ANOVA to test one covariate, adjusting for 
everything else, then the covariate of interest should be added at the 
end.

• ‘Partial’ ANOVA is mostly used for nested models, including comparing 
models with or without interaction terms.



ANOVA in MLR
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• ‘Partial’ F-test for nested models:
𝐻𝐻0: 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

𝐻𝐻1: 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

• Test statistic is given by: 𝐹𝐹∗ = (𝑆𝑆𝑆𝑆𝑆𝑆𝐿𝐿−𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆)/(𝑑𝑑𝑑𝑑𝐿𝐿−𝑑𝑑𝑑𝑑𝑆𝑆)
𝑆𝑆𝑆𝑆𝑆𝑆𝐿𝐿
𝑑𝑑𝑑𝑑𝐿𝐿

~𝐹𝐹𝑑𝑑𝑑𝑑𝐿𝐿−𝑑𝑑𝑑𝑑𝑆𝑆,𝑑𝑑𝑑𝑑𝐿𝐿 , where

𝑑𝑑𝑑𝑑𝑆𝑆 = 𝑛𝑛 − 𝑝𝑝𝑠𝑠 − 1, 𝑑𝑑𝑑𝑑𝐿𝐿 = 𝑛𝑛 − 𝑝𝑝𝐿𝐿 − 1.

• Because 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 𝑆𝑆𝑆𝑆𝑆𝑆 + 𝑆𝑆𝑆𝑆𝑆𝑆, the test statistic can also be written as:

𝐹𝐹∗ =
(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆−𝑆𝑆𝑆𝑆𝐸𝐸𝐿𝐿)/(𝑑𝑑𝑑𝑑𝐿𝐿 − 𝑑𝑑𝑑𝑑𝑆𝑆)

𝑆𝑆𝑆𝑆𝑆𝑆𝐿𝐿
𝑑𝑑𝑑𝑑𝐿𝐿

• Condition: the two models have to be ‘nested’, i.e., small model is a ‘subset’ of the large model.



ANOVA in MLR
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• Example: compare Model 1 vs Model 2:
Model 1: 𝑌𝑌𝑖𝑖 = 𝛽𝛽0 + 𝛽𝛽1𝑋𝑋𝑖𝑖𝑖 + 𝛽𝛽2𝑋𝑋𝑖𝑖2 + 𝛽𝛽3𝑋𝑋𝑖𝑖3 + 𝛽𝛽4𝑋𝑋𝑖𝑖4 + 𝜀𝜀𝑖𝑖
Model 2: 𝑌𝑌𝑖𝑖 = 𝛽𝛽0 + 𝛽𝛽1𝑋𝑋𝑖𝑖𝑖 + 𝛽𝛽2𝑋𝑋𝑖𝑖𝑖 + 𝜀𝜀𝑖𝑖
• We are testing that:

𝐻𝐻0: 𝛽𝛽3 = 𝛽𝛽4 = 0

𝐻𝐻1: 𝛽𝛽3 ≠ 0 OR 𝛽𝛽4 ≠ 0

• If we reject the null , we conclude that Model 1 is ‘superior’.
• Still, always good to keep in mind the ‘principle of parsimony’.



Example ANOVA for MLR
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Model 1:
>lm(formula = LOS ~ BEDS + INFRISK, data = data_hosp)

Coefficients:
Estimate Std. Error t value Pr(>|t|)    

(Intercept) 6.2703521  0.5038751  12.444  < 2e-16 ***
BEDS        0.0024747   0.0008236   3.005  0.00329 ** 
INFRISK     0.6323812   0.1184476   5.339 5.08e-07 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 1.568 on 110 degrees of freedom
Multiple R-squared:  0.3388, Adjusted R-squared:  0.3268 
F-statistic: 28.19 on 2 and 110 DF,  p-value: 1.31e-10

Model 2:
>lm(formula = LOS ~ BEDS + INFRISK + MS + NURSE, data = data_hosp)

Coefficients:
Estimate     Std. Error t value Pr(>|t|)    

(Intercept)  6.220159   0.504250   12.335    < 2e-16 ***
BEDS         0.005682    0.001906    2.981    0.00355 ** 
INFRISK      0.674537    0.118403    5.697    1.07e-07 ***
MS           0.536804    0.509214    1.054    0.29415    
NURSE       -0.005905   0.002671   -2.211  0.02918 *  
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 1.544 on 108 degrees of freedom
Multiple R-squared:  0.3706, Adjusted R-squared:  0.3472 
F-statistic:  15.9 on 4 and 108 DF,  p-value: 2.924e-10



Example ANOVA for MLR
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Comparing Model 1 vs Model 2 (Model 1 is ‘nested’ in Model 2)
R function: anova(reg1, reg2)
Analysis of Variance Table
Model 1: LOS ~ BEDS + INFRISK

Model 2: LOS ~ BEDS + INFRISK + MS + NURSE

Res.Df RSS        Df Sum of Sq F Pr(>F)  

1 110       270.56                              

2 108       257.57     2       12.985     2.7223 0.07024 

F*=2.72, P=0.07, we fail to reject H0 and conclude that model 2 is not superior, i.e., 

𝛽𝛽𝑀𝑀𝑀𝑀 = 𝛽𝛽𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 = 0



Nested models: Likelihood Ratio Test (LRT)
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• When using maximum likelihood estimation, you can also use the LRT.
• The test statistic is given by:

Δ = −2𝑙𝑙𝑙𝑙𝑙𝑙
𝐿𝐿0
𝐿𝐿1

= −2 𝑙𝑙0 − 𝑙𝑙1 ~𝜒𝜒𝑑𝑑2

• In the formula above, d represents the difference in the number of parameters 
between the two models.

• L0 represents the likelihood for the null model (e.g., small). 
• L1 represents the likelihood for the alternative model (e.g., large).
• 𝑙𝑙0 and 𝑙𝑙1 represent the log-likelihoods under the null and alternative, respectively.



Nested models: Wald Test
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• The Wald test can also be used to test one coefficient or a ‘subset’ of 
coefficients.

• It is based on the parameter estimates and their standard errors 
derived from the maximum likelihood or least squares.

• The Wald statistic is inaccurate when the regression coefficient is 
large, because the standard error tends to be inflated, resulting in the 
Wald statistic being underestimated.



Nested models: Wald (W) Test
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• For a vector of coefficients: 
𝐻𝐻0: 𝛽𝛽 = 𝛽𝛽0

• Test statistic is given by:

𝑊𝑊 = (𝛽̂𝛽 − 𝛽𝛽0)′[𝑣𝑣𝑣𝑣𝑣𝑣(𝛽̂𝛽)] −1(𝛽̂𝛽 − 𝛽𝛽0)

• Under the null, the test statistic 𝑊𝑊∗ follows a 𝜒𝜒𝑝𝑝2 distribution

• In practice, we use an estimate of 𝑣𝑣𝑣𝑣𝑣𝑣(𝛽̂𝛽) and an F distribution
• Note that the Wald and LRT yield similar results, especially when the sample size 

increases.



Multiple comparison adjustment
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Example:
You fit a multiple regression with 20 predictors. By chance
alone, you would expect at least one predictor to be ‘significant’.

• The main idea is to control the family wise error rate (FWER):

• k represents the total number of comparisons.



Multiple comparison adjustment
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Solutions for controlling the FWER:
• Use a global (simultaneous) test (F-test)

• Use a Bonferroni adjustment: α/k for each test
• More conservative -> less powerful

• Define comparisons a priori in the statistical plan

• What about using p-values for model selection? 
• Should we remove all non-significant variables? Why/why not?



R2 vs adjusted R2
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• A high R2 indicates that the regression model ‘fits’ the data well.
• A high percentage in the variance of Y is explained by the relationship with X(s).

• It does not provide information about the model diagnostics.

• Adding a predictor will always increase the R2

• To prevent this increase – use adjusted R2



R2 vs adjusted R2
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• Unadjusted 𝑅𝑅2 = 1 − 𝑆𝑆𝑆𝑆𝑆𝑆
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆

• Adjusted 𝑅𝑅𝑎𝑎𝑎𝑎𝑎𝑎2 = 1 − 𝑆𝑆𝑆𝑆𝑆𝑆
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆

� 𝑛𝑛−1
𝑛𝑛−𝑝𝑝−1

= 1 − (1 − 𝑅𝑅2) � 𝑛𝑛−1
𝑛𝑛−𝑝𝑝−1

• The adjusted 𝑅𝑅𝑎𝑎𝑎𝑎𝑎𝑎2 increases with a new covariate only if the new term 
improves the model more than what is expected by chance alone.



Coefficient of partial determination
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• ‘Partial’ R2 explains the marginal contribution of one predictor X to 
the variation in Y, when all the other variables are present in the 
model

• Example for 3 predictors, but it can be generalized for a set of 
covariates:

𝑅𝑅𝑋𝑋1|𝑋𝑋2,𝑋𝑋3
2 =

𝑆𝑆𝑆𝑆𝑆𝑆(𝑋𝑋1|𝑋𝑋2,𝑋𝑋3)
𝑆𝑆𝑆𝑆𝑆𝑆(𝑋𝑋2,𝑋𝑋3)

• In R, use the anova() function for each of the two models to extract 
the sums of squares (see Lect 16 R code).
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