P8130: Biostatistical Methods I Lecture 16: Multiple Linear Regression <u>ANOVA Testing</u>

Cody Chiuzan, PhD Department of Biostatistics Mailman School of Public Health (MSPH)

Recap from Lecture 15

- Multiple Linear Regression
 - Continuous and categorical predictors
 - Interaction terms
- Today's Outline:
 - ANOVA tables and F-tests
 - Testing several coefficients simultaneously
 - Comparing 'nested' models
 - Adjusted and partial R²

Partitioning the Sum of Squares

- Analysis of variance (ANOVA) vs Regression (practically the same)
- ANOVA results generalize immediately to multiple linear regression

Source of Variation	SS	df	MS	$E\{MS\}$
Regression	$SSR = \Sigma (\hat{Y}_i - \overline{Y})^2$	1	$MSR = \frac{SSR}{1}$	$\sigma^2 + \beta_1^2 \Sigma (X_i - \overline{X})^2$
Error	$SSE = \Sigma (Y_i - \hat{Y}_i)^2$	n-2	$MSE = \frac{SSE}{n-2}$	σ^2
Total	$SSTO = \Sigma (Y_i - \overline{Y})^2$	n-1		

ANOVA table for Simple Linear Regression

ANOVA table for MLR

Source of	SS	df	MS	F
Variation				
Regression	$SSR = \sum_{i=1}^{n} (\hat{Y}_{i} - \overline{Y})^{2}$	р	MSR=SSR/p	MSR/MSE
Error	$SSE = \sum_{i=1}^{n} (\hat{Y}_{i} - \overline{Y})^{2}$	n-(p+1)	MSE=SSE/(n-p-1)	
Total	$SSTO = \sum_{i=1}^{n} (Y_i - \overline{Y})^2$	n-1		

- *p* represents the number of predictors
- <u>Note:</u> the mean square errors are not additive

• In SLR, testing that:

$$H_0: \beta_1 = 0$$
$$H_1: \beta_1 \neq 0$$

- Test statistics: $F^* = MSR/MSE \sim F(1, n 2)$
 - Reject H_0 , if $F^* > F(1 \alpha, n 2)$
 - Fail to Reject H_0 , if $F^* \leq F(1 \alpha, n 2)$
- In SLR (df=1), the F-test and the t-test are equivalent: $t^2 = F$.

- Focuses on two types of F-tests.
 - Global (overall) F-test: is there a relationship between Y and the set of covariates:

*H*₀:
$$\beta_1 = \beta_2 = \cdots = \beta_p = 0$$

*H*₁: at least one β is not zero

- Test statistic: $F^* = \frac{MSR}{MSE} > F(1 \alpha; p, n p 1)$, reject H_0
- The null model contains only the intercept:

$$F^* = \frac{MSR}{MSE} \le F(1 - \alpha; p, n - p - 1)$$
, fail reject H_0

- 'Partial' F-test; more interesting if you want to test if 'some' coefficients are zero at the same time
- Example:

$$H_0: \beta_3 = \beta_4 = 0$$

$$H_1: \beta_3 \neq 0 \text{ OR } \beta_4 \neq 0$$

• Or even a single coefficient:

$$H_0: \beta_3 = 0$$

$$H_1: \beta_3 \neq 0$$

- When using ANOVA for MLR, the order of the terms does matter.
- In ANOVA, the test (p-value) for a certain term is conditioned *for everything else above.*
- In regression, these are conditioned

for everything else that is in the model.

- Use ANOVA to test a covariate, adjusting for some, but not other covariates.
- If you want to use ANOVA to test one covariate, adjusting for everything else, then the covariate of interest should be added at the end.
- 'Partial' ANOVA is mostly used for nested models, including comparing models with or without interaction terms.

• <u>'Partial' F-test for nested models:</u>

 H_0 : small model

 H_1 : large model

- Test statistic is given by: $F^* = \frac{(SSR_L SSR_S)/(df_L df_S)}{\frac{SSE_L}{df_L}} \sim F_{df_L df_S, df_L}$, where $df_S = n p_S 1$, $df_L = n p_L 1$.
- Because SSTO = SSR + SSE, the test statistic can also be written as:

$$F^* = \frac{(SSE_S - SSE_L)/(df_L - df_S)}{\frac{SSE_L}{df_L}}$$

• <u>Condition</u>: the two models have to be 'nested', i.e., small model is a 'subset' of the large model.

- Example: compare Model 1 vs Model 2: Model 1: $Y_i = \beta_0 + \beta_1 X_{i1} + \beta_2 X_{i2} + \beta_3 X_{i3} + \beta_4 X_{i4} + \varepsilon_i$ Model 2: $Y_i = \beta_0 + \beta_1 X_{i1} + \beta_2 X_{i2} + \varepsilon_i$
- We are testing that:

$$H_0: \beta_3 = \beta_4 = 0$$

$$H_1: \beta_3 \neq 0 \text{ OR } \beta_4 \neq 0$$

- If we reject the null, we conclude that Model 1 is 'superior'.
- Still, always good to keep in mind the 'principle of parsimony'.

Example ANOVA for MLR

Model 1:

>Im(formula = LOS ~ BEDS + INFRISK, data = data_hosp)

Coefficients:

EstimateStd. Errort valuePr(>|t|)(Intercept)6.27035210.503875112.444< 2e-16 ***</td>BEDS0.00247470.00082363.0050.00329 **INFRISK0.63238120.11844765.3395.08e-07 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 Residual standard error: 1.568 on 110 degrees of freedom Multiple R-squared: 0.3388, Adjusted R-squared: 0.3268 F-statistic: 28.19 on 2 and 110 DF, p-value: 1.31e-10

Model 2:

>lm(formula = LOS ~ BEDS + INFRISK + MS + NURSE, data = data_hosp)

Coefficients:

MS	0.536804	0.509214	1.054	0.29415
NFRISK	0.674537	0.118403	5.697	1.07e-07 ***
BEDS	0.005682	0.001906	2.981	0.00355 **
Intercept)	6.220159	0.504250	12.335	< 2e-16 ***
	Estimate	Std. Error	t value	Pr(> t)
	Intercept) 3EDS NFRISK <mark>VIS</mark>	Estimate Intercept) 6.220159 BEDS 0.005682 NFRISK 0.674537 VS 0.536804	EstimateStd. ErrorIntercept)6.2201590.504250BEDS0.0056820.001906NFRISK0.6745370.118403VIS0.5368040.509214	EstimateStd. Errort valueIntercept)6.2201590.50425012.335BEDS0.0056820.0019062.981NFRISK0.6745370.1184035.697VIS0.5368040.5092141.054

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 Residual standard error: 1.544 on 108 degrees of freedom Multiple R-squared: 0.3706, Adjusted R-squared: 0.3472 F-statistic: 15.9 on 4 and 108 DF, p-value: 2.924e-10

Example ANOVA for MLR

Comparing Model 1 vs Model 2 (Model 1 is 'nested' in Model 2)

R function: anova(reg1, reg2)

Analysis of Variance Table

- Model 1: LOS ~ BEDS + INFRISK
- Model 2: LOS ~ BEDS + INFRISK + MS + NURSE

Res.Df RSS Df Sum of Sq F Pr(>F)

- 1 110 270.56
- 2 108 **257.57 2 12.985 2.7223 0.07024**

F*=2.72, P=0.07, we fail to reject H0 and conclude that model 2 is not superior, i.e.,

$$\beta_{MS} = \beta_{NURSE} = 0$$

Nested models: Likelihood Ratio Test (LRT)

- When using maximum likelihood estimation, you can also use the LRT.
- The test statistic is given by:

$$\Delta = -2\log\frac{L_0}{L_1} = -2(l_0 - l_1) \sim \chi_d^2$$

- In the formula above, *d* represents the difference in the number of parameters between the two models.
- L_o represents the likelihood for the null model (e.g., small).
- L₁ represents the likelihood for the alternative model (e.g., large).
- l_0 and l_1 represent the log-likelihoods under the null and alternative, respectively.

Nested models: Wald Test

- The Wald test can also be used to test one coefficient or a 'subset' of coefficients.
- It is based on the parameter estimates and their standard errors derived from the maximum likelihood or least squares.
- The Wald statistic is inaccurate when the regression coefficient is large, because the standard error tends to be inflated, resulting in the Wald statistic being underestimated.

Nested models: Wald (W) Test

• For a vector of coefficients:

$$H_0: \beta = \beta_0$$

• Test statistic is given by:

$$W = (\hat{\beta} - \beta_0)' [var(\hat{\beta})]^{-1} (\hat{\beta} - \beta_0)$$

- Under the null, the test statistic W^* follows a χ_p^2 distribution
- In practice, we use an estimate of $var(\hat{\beta})$ and an F distribution
- Note that the Wald and LRT yield similar results, especially when the sample size increases.

Multiple comparison adjustment

Example:

- You fit a multiple regression with 20 predictors. By chance alone, you would expect at least one predictor to be 'significant'.
- The main idea is to control the family wise error rate (FWER):

$$FWER = 1 - (1 - \alpha)^k$$

• k represents the total number of comparisons.

Multiple comparison adjustment

Solutions for controlling the FWER:

- Use a global (simultaneous) test (F-test)
- Use a Bonferroni adjustment: α/k for each test
 - More conservative -> less powerful
- Define comparisons *a priori* in the statistical plan
- What about using p-values for model selection?
 - Should we remove all non-significant variables? Why/why not?

R^2 vs adjusted R^2

- A high R² indicates that the regression model 'fits' the data well.
 - A high percentage in the variance of Y is explained by the relationship with X(s).
- It does not provide information about the model diagnostics.
- Adding a predictor will always increase the R²
 - To prevent this increase use adjusted R²

R^2 vs adjusted R^2

• Unadjusted
$$R^2 = 1 - \frac{SSE}{SSTO}$$

• Adjusted
$$R_{adj}^2 = 1 - \frac{SSE}{SSTO} \cdot \frac{n-1}{n-p-1} = 1 - (1-R^2) \cdot \frac{n-1}{n-p-1}$$

• The adjusted R_{adj}^2 increases with a new covariate only if the new term improves the model more than what is expected by chance alone.

Coefficient of partial determination

- 'Partial' R² explains the marginal contribution of one predictor X to the variation in Y, when all the other variables are present in the model
- Example for 3 predictors, but it can be generalized for a set of covariates:

$$R_{X_1|X_2,X_3}^2 = \frac{SSR(X_1|X_2,X_3)}{SSE(X_2,X_3)}$$

• In R, use the *anova()* function for each of the two models to extract the sums of squares (see Lect 16 R code).