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Diagnostics in MLR
• Remember the assumptions we made regarding residuals:

• Residuals are normally distributed
• Variance of residuals is constant across the range of X(s)
• Residuals are independent of one another

• Model diagnostics are important and should always be checked! 
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Diagnostic Considerations
Regarding residuals:

• Residuals are not normally distributed
• Residuals are not independent
• Residuals do not have constant variance

(homoscedasticity vs heteroscedasticity)

Other considerations:

• The regression function is not linear
• The model fits well, but there are some ‘unusual’ observations

• Outliers in Y
• Outliers in X
• Influential observations

• There is high correlation between predictors (multicollinearity)
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Diagnostic Plots
• Residuals (Y-axis) vs fitted values (X-axis)
• Residuals (Y-axis) vs an observed covariate (X-axis)
• Residuals boxplot
• Normality probability plot and quantile-quantile (QQ plot)
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Residuals vs Fitted/Predicted Values Plot
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• The plot is used to detect unequal error variance (heteroscedasticity) 
and outliers

• Ideally, we would like to see that:
• Residual values bounce around 0 (the expected value is 0, right?)
• Residuals form a horizontal (linear) ‘band’ around zero: above and below 

(indication of equal variance)
• No ‘unusual’ values stand out from the random pattern (indication of no 

potential outliers)

• Do not over-interpret these plots and be careful about small data 
sets!



Residuals vs Fitted/Predicted Values
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Plot b) is to be preferred – random pattern, evenly distributed around 0.



Add’l Examples 
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Compare the two plots – obviously, the plot on the right suggests a potential curvilinear 
(quadratic?) trend.



Quantile – Quantile Plot (QQplot)
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• The plot is used to detect (non) normality of residuals and outliers
• It plots the quantiles of a standard normal vs quantiles of the 

observed data
• Ideally, we would like to see a straight line (residuals are normal)
• Small departures from normality are not concerning
• Heavy tails indicate the presence of outliers



Quantile-Quantile Plot (QQ-Plot)
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Which of these plots is more in line with the ‘normality’ assumption?



Add’l Examples 
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Compare the two plots – any deviations from normality?



Other Plots

11

• Scale-Location plot shows if the residuals are spread equally along 
the range of predictors

• The plot helps checking the assumption of equal variance
• Ideally, we would like to see a horizontal line with equally spread points

• Residuals vs Leverage
• The plot helps identify influential cases
• Not all outliers are influential, i.e., the results do not differ much if we 

include/exclude from analysis
• We watch for outlying values at the upper right or lower right corner (cases 

outside of a dashed line, Cook’s distance)



Add’l Examples 
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What can you see in the two plots?



Add’l Examples 
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What can you see in the two plots?



Residuals vs Covariate Plot
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• The plot shows if the spread 
of residuals around the Y=0 
line is approximately constant 
over the range of X

• Can also observe the ‘fanning 
of the data’, i.e., large 
variance as X increases

• Is there a linear relationship 
b/w residuals and X? A 
curved pattern indicates that 
the predictor should enter 
the model in a curvilinear 
manner.



Diagnostics - Remedies
• Residuals heteroscedasticity (non-constant variance) and non-

normality
• Transformations of the outcome (Y) or of the covariates (X)
• Common transformations

• Natural logarithm
• Square root
• Inverse: 1/Y

• How to determine the ‘best’ transformation?
• Box-Cox transformation: finds the ‘best’ power transformation to achieve 

normal residuals
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Box-Cox Transformation
• Box-Cox method applies a transformation by raising 𝑌𝑌 to different 

powers: 𝑌𝑌𝑎𝑎
• The solution or the recommended transformation is the ‘𝑎𝑎’ value 

that maximizes the likelihood and stabilizes the variance or makes 
the data more ‘normal’

• Common powers:
• Natural logarithm: a=0
• Square root: a=1/2
• Inverse: a=-1
• Identity: a=1 (no transformation)
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Box-Cox Transformation
Simple Linear Regression

fit1 <- lm(Survival ~ Bloodclot, data=data_surg)
boxcox(fit1)

Multiple Linear Regression (MLR)

mult.fit1 <- lm(Survival ~ Bloodclot + Progindex
+ Enzyme + Liver + Age + Gender + Alcmod + 
Alcheav, data=data_surg) 
boxcox(mult.fit1) 
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Box-Cox Transformation
MLR untransformed MLR log transformed
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Compare the two plots? Should we even transform at all?



Outliers and Influential Observations
• Outliers are individual observations that are in ‘some way’ different 

from the bulk of the data set

• Outliers can be found among:
• The Y values
• The X values
• For both X and Y 

• In SLR, outliers can be identified with scatter plots
• In MLR, we rely on the complex diagnostics
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Outliers in Y
• Outliers in Y can be detected using ‘studentized residuals’
• The internally studentized residual for the 𝑖𝑖𝑡𝑡𝑡 observation is:

𝑟𝑟𝑖𝑖 =
𝑒𝑒𝑖𝑖

𝑠𝑠{𝑒𝑒𝑖𝑖}
=

𝑒𝑒𝑖𝑖
𝑀𝑀𝑀𝑀𝑀𝑀(1 − ℎ𝑖𝑖𝑖𝑖)

• Where ℎ𝑖𝑖𝑖𝑖 is the diagonal element of the hat matrix H:

𝐇𝐇 = 𝐗𝐗(𝐗𝐗′𝐗𝐗)−𝟏𝟏𝐗𝐗𝐗, where �e = (𝐈𝐈 − 𝐇𝐇)�Y

• Rule of thumb: an observation with |𝑟𝑟𝑖𝑖| > 2.5 may be considered an 
outlier (in Y)
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Leverage values: Outliers in X
• The diagonal elements ℎ𝑖𝑖𝑖𝑖 of the hat matrix are also called leverage 

values

• They measure how far each observation is from the center of the X 
space

𝜎𝜎2 �̃�𝑒 = 𝜎𝜎2 𝐈𝐈 − 𝐇𝐇

0 ≤ ℎ𝑖𝑖𝑖𝑖 ≤ 1, with ∑𝑖𝑖=1𝑛𝑛 ℎ𝑖𝑖𝑖𝑖 = 𝑝𝑝,

𝑝𝑝 represents the number of model parameters (includes intercept).
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Leverage values: Outliers in X
• If a ℎ𝑖𝑖𝑖𝑖 leverage value is high, this means that the 𝑖𝑖𝑡𝑡𝑡 observation might 

have an influence on the fitted equation (model parameter estimates).
• Rules of thumb:

0.2 < ℎ𝑖𝑖𝑖𝑖 > 0.5, moderate leverage
ℎ𝑖𝑖𝑖𝑖 > 2p/n, high leverage
ℎ𝑖𝑖𝑖𝑖 > 0.5, very high leverage

• This rule only applies to large data sets, relative to the number of 
parameters

• Imagine n = 4 cases and p = 3? 
• For p = 2, take 0.2 as cutoff
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Influential Observations
• After identifying cases that are outlying with respect to their Y 

and/or X values, we need to determine if they are influential

• An observation is influential if its exclusion or inclusion causes major 
changes in the regression function (estimates)

• We focus on two measures of influence that both measure the 
difference b/w the fitted line with observation ‘i’ included and the 
fitted line with observation ‘i’ deleted
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Influential Observations
• DFFITS: DF stands for the difference between the fitted value for the 
𝑖𝑖𝑡𝑡𝑡case when all observations are used to fit the regression line and 
the predicted value of the 𝑖𝑖𝑡𝑡𝑡case, when the 𝑖𝑖𝑡𝑡𝑡observation is 
omitted:

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑀𝑀𝑖𝑖 =
�𝑌𝑌𝑖𝑖 − �𝑌𝑌𝑖𝑖(𝑖𝑖)
𝑀𝑀𝑀𝑀𝑀𝑀(𝑖𝑖) ℎ𝑖𝑖𝑖𝑖

• Rules of thumb of concern:
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑀𝑀𝑖𝑖 > 1, for small data sets

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑀𝑀𝑖𝑖 > 2 𝑝𝑝/𝑛𝑛, for large data sets
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Influential Observations
• Cook’s distance D: considers the influence of the ith case on all fitted 

values:

𝐷𝐷𝑖𝑖 =
∑𝑗𝑗=1𝑛𝑛 (�𝑌𝑌𝑗𝑗 − �𝑌𝑌𝑗𝑗(𝑖𝑖))2

𝑝𝑝𝑀𝑀𝑀𝑀𝑀𝑀

• Using Cook’s distance, an observation can be influential if:
• Has a high residual 𝑒𝑒𝑖𝑖 and moderate ℎ𝑖𝑖𝑖𝑖
• Has high ℎ𝑖𝑖𝑖𝑖 and moderate 𝑒𝑒𝑖𝑖
• Or both

• Rule of thumb: 𝐷𝐷𝑖𝑖 > 1 0.5 in R 𝑜𝑜𝑟𝑟 𝐷𝐷𝑖𝑖 > 4/𝑛𝑛 is of concern.
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Handling ‘Unusual’ Observations
• Always be true to the data

• Examine the observations before excluding them from the analysis

• If they are truly representative of the population, it is better to leave 
them in the dataset

• Compare the model estimates with and without outliers

• If the slope estimates change, then you might deal with influential 
points
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Multicollinearity or Intercorrelation
• Refers to the situation when the predictor variables are (highly) 

correlated among themselves

• (Multi)Collinearity occurs when essentially the same variable is 
entered into a regression equation twice, or when two variables 
contain exactly the same information as two other variables

• Other causes of collinearity

• One variable is a linear combination of several variables in the data
• Perfect collinearity is usually ‘by mistake’
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Effects of Collinearity
• Assume a linear regression with only one predictor:

𝑀𝑀 𝑌𝑌 𝑋𝑋 = �𝛽𝛽𝑜𝑜 + �𝛽𝛽1𝑋𝑋1

• Let us fit another regression with 𝑋𝑋1 and 𝑋𝑋2 = 5 + 0.5𝑋𝑋1

• The fitted response functions can be:

𝑀𝑀 𝑌𝑌 𝑋𝑋 = −87 + 𝑋𝑋1 + 18𝑋𝑋2
OR

𝑀𝑀 𝑌𝑌 𝑋𝑋 = −7 + 𝑋𝑋1 + 2𝑋𝑋2
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Effects of Collinearity
• The fitted response functions have entirely different response 

surfaces, intersecting only on one line, which is:

𝑋𝑋2 = 5 + 0.5𝑋𝑋1

• Because the two variables are perfectly related implies that a 
unique solution might not exist

• Design matrix 𝑿𝑿 is not full rank, i.e., the columns are linearly dependent
• Matrix 𝑿𝑿𝐗𝑿𝑿 is singular:  (𝑿𝑿′𝑿𝑿)−1does not exist and a generalized inverse will 

be used instead: (𝑿𝑿′𝑿𝑿)−
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Effects of Collinearity
• R example: generate a dataset containing the following variables:

• Height (response variable)
• Age
• Age_copy = Age (purely a copy of Age)
• Age_new = Age + small error

• Check the correlation/scatter plot matrix for all these variables

• Fit different regressions and interpret the results
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Collinearity: R example
Correlation/scatter plot matrix for all 4 variables in the data

>cor(data.multi)
age     height  age_copy age_new

age      1.00       0.780      1.00        0.980
height   0.78       1.000      0.78        0.762
age_copy 1.00  0.780      1.00        0.980
age_new 0.98  0.762      0.98        1.000
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Collinearity: R example
Regression 1:
>lm(formula = height ~ age, data = data.multi)
Coefficients:

Estimate Std. Error t value Pr(>|t|)    
(Intercept)  22.6639     5.3627   4.226     5.33e-05 ***
age           2.0772     0.1684  12.333  < 2e-16 ***
Residual standard error: 15.88 on 98 degrees of freedom
Multiple R-squared:  0.6082, Adjusted R-squared:  0.6042 
F-statistic: 152.1 on 1 and 98 DF,  p-value: < 2.2e-16
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Collinearity: R example
Regression 2:
>lm(formula = height ~ age + age_copy, data = data.multi)
Coefficients: (1 not defined because of singularities)

Estimate Std. Error t value  Pr(>|t|)    
(Intercept)  22.6639     5.3627   4.226    5.33e-05 ***
age           2.0772     0.1684  12.333  < 2e-16 ***
age_copy NA         NA           NA          NA    
Residual standard error: 15.88 on 98 degrees of freedom
Multiple R-squared:  0.6082, Adjusted R-squared:  0.6042 
F-statistic: 152.1 on 1 and 98 DF,  p-value: < 2.2e-16
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Collinearity: R example
Regression 3:
>lm(formula = height ~ age + age_new, data = data.multi)
Coefficients:

Estimate Std. Error t value Pr(>|t|)    
(Intercept)  22.5716     5.4153   4.168    6.68e-05 ***
age           2.2215     0.8447   2.630    0.00994 ** 
age_new -0.1409     0.8085  -0.174  0.86198    
Residual standard error: 15.96 on 97 degrees of freedom
Multiple R-squared:  0.6083, Adjusted R-squared:  0.6002 
F-statistic: 75.32 on 2 and 97 DF,  p-value: < 2.2e-16
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Collinearity: R example
Regression 4:
>lm(formula = height ~ age + age_copy + age_new, data = data.multi)
Coefficients: (1 not defined because of singularities)

Estimate Std. Error  t value Pr(>|t|)    
(Intercept)  22.5716     5.4153   4.168    6.68e-05 ***
age           2.2215      0.8447   2.630    0.00994 ** 
age_copy NA         NA          NA          NA    
age_new -0.1409     0.8085  -0.174  0.86198  
Residual standard error: 15.96 on 97 degrees of freedom
Multiple R-squared:  0.6083, Adjusted R-squared:  0.6002 
F-statistic: 75.32 on 2 and 97 DF,  p-value: < 2.2e-16
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R example: Conclusions
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• Error message and NAs when Age and Age_copy were modeled 
together

• Note: not all software programs give error messages

• Adding Age_new (Regression 4) compared to Age only (Regression 1)
• The estimated coefficient of Age had a small change, but the standard error 

was inflated
• Age_new became non-significant
• Minimal increase in R-squared, i.e., adding Age_new is redundant



Collinearity: General Conclusions
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• If entered together in MLR, one or more correlated variables will 
become non-significant

• The magnitude/direction of the coefficients will change
• The standard errors will be inflated

• ‘Flat’ SSR because one variable contains pretty much the same info as the 
other

• The coefficient of determination will have little increase



Identify Collinearity
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• A simple approach is to use the variance inflation factor (VIF)
• A VIF for a single predictor is obtained using the R-squared of the 

regression of that variable against all other predictors:

𝑉𝑉𝐷𝐷𝐷𝐷𝑗𝑗 =
1

1 − 𝑅𝑅𝑗𝑗
• A VIF is calculated for each of the predictors and variables with ‘high’ 

VIFs are removed
• VIF > 5 suggest that the coefficients might be misleading due to collinearity
• VIF > 10 implies serious collinearity



Remedies for Collinearity
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• Drop one or several correlated variables from the model (which one?)
• The non-significant variable
• The variable with less missing data, if the case

• In polynomial regression, use the centered data for predictors

• Use principal components analysis (PCA), based on eigenvalues

• Use Ridge regression or other shrinkage/penalized methods



Readings

Kutner et al., Applied Linear Statistical Models

• Chapter 10, Sections: 10.2 – 10.5
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