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Diagnostics in MLR

e Remember the assumptions we made regarding residuals:
e Residuals are normally distributed
e Variance of residuals is constant across the range of X(s)
e Residuals are independent of one another

e Model diagnostics are important and should always be checked!



Diagnostic Considerations

Regarding residuals:

e Residuals are not normally distributed

e Residuals are not independent

e Residuals do not have constant variance
(homoscedasticity vs heteroscedasticity)

Other considerations:

e The regression function is not linear

e The model fits well, but there are some ‘unusual’ observations
e QutliersinyY
e Qutliersin X
e |nfluential observations

e There is high correlation between predictors (multicollinearity)



Diagnostic Plots

e Residuals (Y-axis) vs fitted values (X-axis)
e Residuals (Y-axis) vs an observed covariate (X-axis)
e Residuals boxplot

 Normality probability plot and quantile-quantile (QQ plot)



Residuals vs Fitted/Predicted Values Plot

* The plot is used to detect unequal error variance (heteroscedasticity)
and outliers

 |deally, we would like to see that:
e Residual values bounce around O (the expected value is 0, right?)

e Residuals form a horizontal (linear) ‘band’ around zero: above and below
(indication of equal variance)

* No ‘unusual’ values stand out from the random pattern (indication of no
potential outliers)

* Do not over-interpret these plots and be careful about small data
sets!



Residuals vs Fitted/Predicted Values

(a) Residual Plot for Y (Survival) (b) Residual Plot for InY (LnSurvival)
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Plot b) is to be preferred — random pattern, evenly distributed around O.



Add’| Examples

Residuals vs Fitted
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Residuals vs Fitted
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Compare the two plots — obviously, the plot on the right suggests a potential curvilinear

(quadratic?) trend.



Quantile — Quantile Plot (QQplot)

* The plot is used to detect (non) normality of residuals and outliers

* It plots the quantiles of a standard normal vs quantiles of the
observed data

* |deally, we would like to see a straight line (residuals are normal)

 Small departures from normality are not concerning
* Heavy tails indicate the presence of outliers



Quantile-Quantile Plot (QQ-Plot)

(a) QQ Plot for Y (Survival) (d) QQ Plot InY (LnSurvival)
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Which of these plots is more in line with the ‘normality’ assumption?



Add’| Examples

Normal Q-Q
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Compare the two plots — any deviations from normality?
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Other Plots

» Scale-Location plot shows if the residuals are spread equally along
the range of predictors
* The plot helps checking the assumption of equal variance
 |deally, we would like to see a horizontal line with equally spread points

* Residuals vs Leverage
e The plot helps identify influential cases

 Not all outliers are influential, i.e., the results do not differ much if we
include/exclude from analysis

e We watch for outlying values at the upper right or lower right corner (cases
outside of a dashed line, Cook’s distance)



Add’l Examples

Scale-Location

+Standardized residuals|
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What can you see in the two plots?
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Add’l Examples

Standardized residuals
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What can you see in the two plots?

Standardized residuals

Residuals vs Leverage
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Residuals vs Covariate Plot

 The plot shows if the spread

of residuals around the Y=0
line is approximately constant
over the range of X
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e Can also observe the ‘fanning
of the data’, i.e., large .
variance as X increases T T
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Diagnostics - Remedies

e Residuals heteroscedasticity (non-constant variance) and non-
normality
e Transformations of the outcome (Y) or of the covariates (X)
e Common transformations
e Natural logarithm
e Square root
e Inverse: 1/Y

e How to determine the ‘best’ transformation?
e Box-Cox transformation: finds the ‘best’ power transformation to achieve
normal residuals



Box-Cox Transformation

* Box-Cox method applies a transformation by raising Y to different
powers: Y¢

e The solution or the recommended transformation is the ‘a’ value
that maximizes the likelihood and stabilizes the variance or makes
the data more ‘normal’

e Common powers:
e Natural logarithm: a=0
e Square root: a=1/2
* |nverse: a=-1
e |dentity: a=1 (no transformation)



Box-Cox Transformation

Simple Linear Regression Multiple Linear Regression (MLR)

fitl <- Im(Survival ~ Bloodclot, data=data_surg) mult.fitl <- Im(Survival ~ Bloodclot + Progindex
boxcox(fit1) + Enzyme + Liver + Age + Gender + Alcmod +
Alcheav, data=data_surg)

boxcox(mult.fitl)
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Standardized residuals

Box-Cox Transformation

MLR untransformed MLR log transformed

Normal Q-Q Normal Q-Q
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Im(Survival ~ Bloodclot + Progindex + Enzyme + Liver + Age + Gender + Alcmo ... Im{Lnsurvival ~ Bloodclot + Progindex + Enzyme + Liver + Age + Gender + Alc ...

Compare the two plots? Should we even transform at all?
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Outliers and Influential Observations

e Outliers are individual observations that are in ‘some way’ different
from the bulk of the data set

e Qutliers can be found among:
e The Y values

e The X values
e For both XandY

* In SLR, outliers can be identified with scatter plots
* In MLR, we rely on the complex diagnostics



OutliersinY

e OQutliers in Y can be detected using ‘studentized residuals’
e The internally studentized residual for the it"* observation is:

€ €
S{ei} - \/MSE(l — hii)

1 =

 Where h;; is the diagonal element of the hat matrix H:
H = X(X'X)"1X', where& = (1 - H)Y

e Rule of thumb: an observation with |r;| > 2.5 may be considered an
outlier (in Y)



Leverage values: Outliers in X

e The diagonal elements h;; of the hat matrix are also called leverage
values

 They measure how far each observation is from the center of the X
space
g?(&) =c*(I1—H)
0 < hii < 1, with 271'1=1 hii =D,

p represents the number of model parameters (includes intercept).



Leverage values: Outliers in X

* If a h;; leverage value is high, this means that the it" observation might
have an influence on the fitted equation (model parameter estimates).
e Rules of thumb:
0.2 < h;; > 0.5, moderate leverage
h;; > 2p/n, high leverage
h;; > 0.5, very high leverage

* This rule only applies to large data sets, relative to the number of
parameters
* Imagine n =4 cases and p = 3?
e For p =2, take 0.2 as cutoff



Influential Observations

o After identifying cases that are outlying with respect to their Y
and/or X values, we need to determine if they are influential

* An observation is influential if its exclusion or inclusion causes major
changes in the regression function (estimates)

* We focus on two measures of influence that both measure the
difference b/w the fitted line with observation ‘i’ included and the
fitted line with observation ‘i’ deleted



Influential Observations

 DFFITS: DF stands for the difference between the fitted value for the
it"case when all observations are used to fit the regression line and
the predicted value of the it"case, when the i*"observation is

omitted:

AN AN\

Yi =Yy

DFFITS; =

e Rules of thumb of concern:
DFFITS;| > 1, for small data sets

DFFITS;| > 2\/p/n, for large data sets



Influential Observations

e Cook’s distance D: considers the influence of the ith case on all fitted

values: _ .
i=1(Y = Yi))?

pMSE

Di=

e Using Cook’s distance, an observation can be influential if:
e Has a high residual e; and moderate h;;

e Has high h;; and moderate ¢;
e Or both

* Rule of thumb: D; > 1 (0.5in R) or D; > 4/n is of concern.



Handling ‘Unusual” Observations

e Always be true to the data
e Examine the observations before excluding them from the analysis

e If they are truly representative of the population, it is better to leave
them in the dataset

* Compare the model estimates with and without outliers

* If the slope estimates change, then you might deal with influential
points



Multicollinearity or Intercorrelation

e Refers to the situation when the predictor variables are (highly)
correlated among themselves

e (Multi)Collinearity occurs when essentially the same variable is
entered into a regression equation twice, or when two variables
contain exactly the same information as two other variables

e Other causes of collinearity

* One variable is a linear combination of several variables in the data
e Perfect collinearity is usually ‘by mistake’



Effects of Collinearity

 Assume a linear regression with only one predictor:
E(YIX) = B, + B1Xy
e Let us fit another regression with X; and X, = 5 + 0.5X;

* The fitted response functions can be:

OR
E(Y|X) = =7 + X; + 2X,



Effects of Collinearity

* The fitted response functions have entirely different response
surfaces, intersecting only on one line, which is:

Xz — 5 + 05X1

* Because the two variables are perfectly related implies that a
unique solution might not exist

e Design matrix X is not full rank, i.e., the columns are linearly dependent

e Matrix X'X is singular: (X'X)1does not exist and a generalized inverse will
be used instead: (X'X)~



Effects of Collinearity

* R example: generate a dataset containing the following variables:
e Height (response variable)
* Age
e Age copy = Age (purely a copy of Age)
e Age new = Age + small error

e Check the correlation/scatter plot matrix for all these variables

* Fit different regressions and interpret the results



Collinearity: R example

Correlation/scatter plot matrix for all 4 variables in the data

>cor(data.multi)

age

age 1.00
height 0.78
age copy 1.00
age_new 0.98
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Collinearity: R example

Regression 1:
>Im(formula = height ~ age, data = data.multi)
Coefficients:

Estimate Std. Error tvalue Pr(>|t])
(Intercept) 22.6639 5.3627 4.226 5.33e-05 ***
age 2.0772 0.1684 12.333 < 2e-16 ***
Residual standard error: 15.88 on 98 degrees of freedom
Multiple R-squared: 0.6082, Adjusted R-squared: 0.6042
F-statistic: 152.1 on 1 and 98 DF, p-value: < 2.2e-16
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Collinearity: R example

Regression 2:

>Im(formula = height ~ age + age_copy, data = data.multi)

Coefficients: (1 not defined because of singularities)
Estimate Std. Error tvalue Pr(>|t])

(Intercept) 22.6639 5.3627 4.226 5.33e-05 ***

age 2.0772 0.1684 12.333 < 2e-16 ***

age_copy NA NA NA NA

Residual standard error: 15.88 on 98 degrees of freedom

Multiple R-squared: 0.6082, Adjusted R-squared: 0.6042

F-statistic: 152.1 on 1 and 98 DF, p-value: < 2.2e-16
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Collinearity: R example

Regression 3:
>Im(formula = height ~ age + age_new, data = data.multi)
Coefficients:

Estimate Std. Error tvalue Pr(>|t])
(Intercept) 22.5716 5.4153 4.168 6.68e-05 ***
age 2.2215 0.8447 2.630 0.00994 **
age new -0.1409 0.8085 -0.174 0.86198
Residual standard error: 15.96 on 97 degrees of freedom
Multiple R-squared: 0.6083, Adjusted R-squared: 0.6002
F-statistic: 75.32 on 2 and 97 DF, p-value: < 2.2e-16
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Collinearity: R example

Regression 4:

>Im(formula = height ~ age + age_copy + age_new, data = data.multi)

Coefficients: (1 not defined because of singularities)
Estimate Std. Error tvalue Pr(>|t])

(Intercept) 22.5716 5.4153 4.168 6.68e-05 ***

age 2.2215 0.8447 2.630 0.00994 **

age_copy NA NA NA NA

age new -0.1409 0.8085 -0.174 0.86198

Residual standard error: 15.96 on 97 degrees of freedom

Multiple R-squared: 0.6083, Adjusted R-squared: 0.6002

F-statistic: 75.32 on 2 and 97 DF, p-value: < 2.2e-16
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R example: Conclusions

* Error message and NAs when Age and Age copy were modeled
together

* Note: not all software programs give error messages

* Adding Age_new (Regression 4) compared to Age only (Regression 1)

 The estimated coefficient of Age had a small change, but the standard error
was inflated

 Age _new became non-significant
 Minimal increase in R-squared, i.e., adding Age_new is redundant



Collinearity: General Conclusions

* If entered together in MLR, one or more correlated variables will
become non-significant

 The magnitude/direction of the coefficients will change

e The standard errors will be inflated

e ‘Flat” SSR because one variable contains pretty much the same info as the
other

* The coefficient of determination will have little increase



|dentify Collinearity

* A simple approach is to use the variance inflation factor (VIF)

* A VIF for a single predictor is obtained using the R-squared of the
regression of that variable against all other predictors:

VIF; =
1= R;
* A VIF is calculated for each of the predictors and variables with ‘high’
VIFs are removed
e VIF > 5 suggest that the coefficients might be misleading due to collinearity
e VIF > 10 implies serious collinearity



Remedies for Collinearity

* Drop one or several correlated variables from the model (which one?)
* The non-significant variable
e The variable with less missing data, if the case

* In polynomial regression, use the centered data for predictors

e Use principal components analysis (PCA), based on eigenvalues

e Use Ridge regression or other shrinkage/penalized methods



Readings

Kutner et al., Applied Linear Statistical Models

e Chapter 10, Sections: 10.2 —10.5
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