P8130: Biostatistical Methods I

Lecture 7: Methods of Inference for Two-Means

Cody Chiuzan, PhD
Department of Biostatistics
Mailman School of Public Health (MSPH)

Lecture 6: Recap

- Sampling Distribution
- Central Limit Theorem (additional simulations in Recitation 2)
- Estimation/Confidence Interval for One-Sample Mean
- Hypothesis Testing for One-Sample Mean

Lecture 7: Outline

- Inference for two-samples means equal and unequal variances:
 - Confidence interval
 - Hypothesis testing
 - Test for equality of variances

Two-Sample Inference

- Thus far we were only interested in one parameter from a single population (one sample)
- What if we want to compare parameters in more than one population?
- In a two-sample setting, we want to make inferences about the parameters of two populations (both values unknown)
 - Paired vs Independent <-> Longitudinal vs Cross-sectional study

The Paired t-test

<u>Example:</u> You are testing a new blood pressure medication on a sample of *n* randomly selected patients that came for a regular consult at CUMC in 2016. Systolic blood pressure (SBP) measurements were recorded at the first visit and 6 months later for all subjects.

Data structure: paired samples

The Paired t-test

Assumptions:

SBP measurements are normally distributed with mean μ_1 and μ_2 , for visit 1 and 2, respectively. If follows that the differences $d_i \sim N(\Delta, \sigma_d^2)$, i = 1, 2, ..., n.

The problem reduces to *one-sample t-test* based on the differences d_i (variance unknown), where:

Visit 1 Visit 2 Differences
$$X_{11} \to X_{12} \quad d_1 = X_{11} - X_{12} \ X_{21} \to X_{22} \quad d_2 = X_{21} - X_{22} \ \vdots \quad \vdots \ X_{n1} \to X_{n2} \quad d_n = X_{n1} - X_{n2}$$

$$\bar{d}=\sum_{i=1}^n d_i/n$$
 and $s_d=\sqrt{\sum_{i=1}^n \left(d_i-\bar{d}\right)^2/(n-1)}$, n represents # of pairs

Two-Sided Paired t-test

Test for the mean of the differences with unknown variance

$$H_0$$
: $\mu_1 - \mu_2 = 0$ or $\Delta = 0$
VS.
 H_1 : $\mu_1 - \mu_2 \neq 0$ or $\Delta \neq 0$

With significance level α pre-specified, compute the test statistic:

$$t = \frac{\bar{d} - 0}{s_d / \sqrt{n}}$$

Reject H_0 : if $|t| > t_{n-1,1-\alpha/2}$ Fail to reject H_0 : if $|t| \le t_{n-1,1-\alpha/2}$

 $t_{n-1,1-\alpha/2}$ is called the critical value and it can be found in tables or calculated using software.

Confidence Interval for Δ

A $100(1-\alpha)\%$ confidence interval for the true mean difference (Δ) for two paired samples is given by:

$$\bar{d} - t_{n-1,1-\alpha/2} \frac{s_d}{\sqrt{n}} \le \Delta \le \bar{d} + t_{n-1,1-\alpha/2} \frac{s_d}{\sqrt{n}}$$

Where:

 $ar{d}$ is the point estimate of the mean difference

 $\frac{s_d}{\sqrt{n}}$ is the estimated standard error of the differences

 $t_{n-1,1-\alpha/2}$ is the percentile of the t-distribution with (n-1) degrees of freedom

The Paired t-test: Example

Test if a new diet has an effect on lowering the cholesterol levels. Use the data below recorded from 12 randomly selected subjects (time interval: 3mo).

Subject	Before (X ₁)	After (X ₂)	Difference (After-Before)	
1	201	200	-1	
2	231	236	5	
3	221	216	-5	
4	260	233	-27	
5	228	224	-4	
6	237	216	-21	
7	326	296	-30	
8	235	195	-40	
9	240	207	-33	
10	267	247	-20	
11	284	210	-74	
12	201	209	8	

The Paired t-test: Example

Assume the observed differences constitute a random sample from a normally distributed population of differences. In class practice.

Two-Sample t-test for Independent Samples

 Consider that our two samples are independent (there is no relation / correlation between the data points from the two groups) and that they are normally distributed:

$$X_1 \sim N(\mu_1, \sigma_1^2)$$
 and $X_2 \sim N(\mu_2, \sigma_2^2)$

We can assume that the underlying variances of the two samples are <u>equal</u>:

$$\sigma_1^2 = \sigma_2^2 = \sigma^2$$

We can assume that the underlying variances of the two samples are <u>unequal</u>:

$$\sigma_1^2 \neq \sigma_2^2$$

Two-Sample Independent t-test: Equal Variances

• If we know the two population variances, then:

$$\overline{X_1} - \overline{X_2} \sim N\left(\mu_1 - \mu_2, \frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}\right)$$

• Because $\sigma_1^2 = \sigma_2^2 = \sigma^2$, it follows that:

$$\overline{X_1} - \overline{X_2} \sim N\left(\mu_1 - \mu_2, \frac{\sigma^2}{n_1} + \frac{\sigma^2}{n_2}\right)$$

• Thus, testing H_0 : $\mu_1 = \mu_2$ can use the test statistic:

$$z = \frac{\overline{X_1} - \overline{X_2}}{\sqrt{\sigma^2 \left(\frac{1}{n_1} + \frac{1}{n_2}\right)}}$$

Two-Sample Independent t-test: Equal Variances

- However, most of the times we do not know the common variance and we have to find <u>one</u> estimator using the sample variances s_1^2 and s_2^2 .
- The pooled estimate of the variance from two independent samples is given by:

$$s^{2} = \frac{(n_{1} - 1)s_{1}^{2} + (n_{2} - 1)s_{2}^{2}}{n_{1} + n_{2} - 2} \quad (*)$$

• Explain the denominator.

Two-Sample Independent t-test: Equal Variances

$$H_0: \mu_1 = \mu_2 \text{ vs } H_1: \mu_1 \neq \mu_2 \text{ (two-sided)}$$

With significance level α pre-specified, compute the test statistic:

$$t = \frac{\overline{X_1} - \overline{X_2}}{s\sqrt{\left(\frac{1}{n_1} + \frac{1}{n_2}\right)}}, \text{ where } s \text{ is given in (*)}.$$

Reject H_0 : if $|t| > t_{n_1 + n_2 - 2, 1 - \alpha/2}$ Fail to reject H_0 : if $|t| \le t_{n_1 + n_2 - 2, 1 - \alpha/2}$

P-value =
$$2 \times P(t_{n_1+n_2-2} < t)$$
, if $t < 0$
= $2 \times P(t_{n_1+n_2-2} \ge t)$, if $t \ge 0$

Two-Sample Independent t-test: Unequal Variances

• If we know the two population variances, then:

$$\overline{X_1} - \overline{X_2} \sim N\left(\mu_1 - \mu_2, \frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}\right)$$

• For testing H_0 : $\mu_1 = \mu_2$ we can use the z-test statistic:

$$z = \frac{\overline{X_1} - \overline{X_2}}{\sqrt{\left(\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}\right)}}$$

• Or (again) use s_1^2 and s_2^2 to estimate the two population variances (if these values are unknown).

Two-Sample Independent t-test: Unequal Variances

 $H_0: \mu_1 = \mu_2 \text{ vs } H_1: \mu_1 \neq \mu_2 \text{ (two-sided)}$

With significance level α pre-specified, compute the test statistic:

$$t = \frac{\overline{X_1} - \overline{X_2}}{\sqrt{\left(\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}\right)}}$$

Compute the approximating degrees of freedom d', and round down to the nearest integer d'':

$$d' = \frac{\left(\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}\right)^2}{\left(\frac{s_1^2}{n_1}\right)^2 / (n_1 - 1) + \left(\frac{s_2^2}{n_2}\right)^2 / (n_2 - 1)} \tag{**}$$

Two-Sample Independent t-test: Unequal Variances

 H_0 : $\mu_1 = \mu_2 \text{ vs } H_1$: $\mu_1 \neq \mu_2 \text{ (two-sided)}$

With significance level α pre-specified, compute the test statistic:

$$t = \frac{\overline{X_1} - \overline{X_2}}{\sqrt{\left(\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}\right)}}$$

Reject H_0 : if $|t| > t_{d'',1-\alpha/2}$

Fail to reject H_0 : if $|t| \leq t_{d'',1-\alpha/2}$

Where d'' represents the nearest integer of d' (degrees of freedom) (**).

Confidence Intervals for Two Independent Samples

Two-sided $100(1-\alpha)\%$ confidence interval for:

• Two-independent samples (equal variance): $\mu_1 - \mu_2(\sigma_1^2 = \sigma_2^2 = \sigma^2)$:

$$(\overline{X_1} - \overline{X_2} - t_{n_1 + n_2 - 2, 1 - \alpha/2} s \sqrt{1/n_1 + 1/n_2}, \overline{X_1} - \overline{X_2} + t_{n_1 + n_2 - 2, 1 - \alpha/2} s \sqrt{1/n_1 + 1/n_2})$$

• Two-independent samples (unequal variance): $\mu_1 - \mu_2(\sigma_1^2 \neq \sigma_2^2)$:

$$(\overline{X_1} - \overline{X_2} - t_{d'',1-\alpha/2} \sqrt{s_1^2/n_1 + s_2^2/n_2}, \overline{X_1} - \overline{X_2} + t_{d'',1-\alpha/2} \sqrt{s_1^2/n_1 + s_2^2/n_2})$$

Where d'' represents the nearest integer of d' (degrees of freedom) (**).

Test for Equality of Variances

Assume two independent random samples from $N(\mu_1, \sigma_1^2)$ and $N(\mu_2, \sigma_2^2)$.

Testing the equality of variances implies testing the hypotheses:

$$H_0: \sigma_1^2 = \sigma_2^2 \text{ vs } H_1: \sigma_1^2 \neq \sigma_2^2$$

The significance test is based on the relative magnitudes of the sample variances. (Why?) With significance level α pre-specified, compute the test statistic:

$$F = \frac{S_1^2}{S_2^2} \sim F_{n_1 - 1, n_2 - 1}$$

The test statistic follows an F distribution with n_1-1 and n_2-1 degrees of freedom.

Test for Equality of Variances

Testing the hypotheses:

$$H_0: \sigma_1^2 = \sigma_2^2 \text{ vs } H_1: \sigma_1^2 \neq \sigma_2^2$$

With significance level α pre-specified, compute the test statistic:

$$F = \frac{s_1^2}{s_2^2} \sim F_{n_1 - 1, n_2 - 1}$$

Reject
$$H_0$$
: if $F > F_{n_1-1,n_2-1,1-\alpha/2}$ or $F < F_{n_1-1,n_2-1,\alpha/2}$

Fail to reject
$$H_0$$
: if $F_{n_1-1,n_2-1,\alpha/2} \le F \le F_{n_1-1,n_2-1,1-\alpha/2}$

P-value =
$$2 \times P(F_{n_1-1,n_2-1} > F)$$
, if $F \ge 1$
= $2 \times P(F_{n_1-1,n_2-1} < F)$, if $F < 1$

Two-Samples Independent t-test

<u>Example</u>: To assess the impact of oral contraceptive use on bone mineral density (BMD), researchers in Canada carried out a study comparing BMD for women who had used oral contraceptives (OC) for at least 3 months to BMD for women who had never used oral contraceptives (OC). Summary values for BMD are given below:

	n	\bar{X}	S
Non OC users	10	1.08	0.16
OC users	10	1.00	0.14

- a) Assuming that the BMD is normally distributed in both OC and non-OC users, is there enough evidence to conclude that BMD levels differ between the two groups?
- b) Construct a 95% CI for the population mean difference.

In class practice.

Readings

Rosner, Fundamentals of Biostatistics, Chapter 8

• Sections: 8.1 – 8.7