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Lectures	6&7:	Recap
• Inferences	for	one- and	two-samples	means

• Confidence	intervals
• Hypothesis	testing
• Power	and	sample	size	calculation



Lectures	8:	Outline

• Analysis	of	Variance	(ANOVA)
• One-Way	ANOVA	(one	treatment	group	with	more	than	two	levels)

• Hypothesis	testing	in	One-Way	ANOVA	(fixed	effects	model)

• Comparisons	of	specific	groups

• Multiple	comparisons	–methods	of	adjusting	for	multiple	comparisons



What	is	Analysis	of	Variance	(ANOVA)?
• ANOVA	is	used	for	comparing	the	means	of	more	than	two	distributions
• Multi-sample	inferences	– imply	more	than	two	independent	groups
• Compare	the	response	(continuous	variable)	with	respect	to	the	levels	of	a	factor	
(categorical	variable)

• In	One-Way	ANOVA	we	have	one variable	with	more	than	two	levels
• E.g.,	Treatment	group:	placebo,	high	dose,	low	dose.

• We	want	to	test	for	any	differences	in	mean	response	among	those	levels
• A	direct	generalization	of	the	t-test	methodology



What	is	Analysis	of	Variance	(ANOVA)?
• One-Way	ANOVA:	test	for	any	differences	in	mean	response	among	
different	levels	of	a	factor	(>2	levels)

• Can	we	simply	subtract	the	sample	mean	values?	No.

• Instead,	we	analyze	the	variance	in	the	data	by	partitioning	it
• Is	the	variance	within each	group	small	compared	to	the	variance	between the	
groups	(specifically,	between	the	group	means)?	



One-Way	ANOVA:	General	Hypotheses
• Suppose	that	in	an	experiment	we	have	k treatment	groups	(or	number	
of	levels).
• The	multi-sample	hypotheses	to	be	tested	are:

𝐻":	𝜇& = 𝜇( = 	… = 𝜇*,	i.e.,	ALL	treatment	means	are	equal
vs.

	𝐻&: at	least	two	of	the	treatment	population	means	differ,	
i.e.,	not	ALL	treatment	means	are	equal



One-Way	ANOVA:	Model
• Suppose	that	there	are	k groups	with	𝑛, observations	in	the	𝑖./ group.
• Let	𝑦,1	denote	the	𝑗./ observation	from	the	𝑖./ group.
• The	One-Way	ANOVA	model	can	be	specified	as:

𝑦,1 = 𝜇 + 𝛼, + 𝑒,1	, 𝑖 = 1, 2,… , 𝑘, 𝑗 = 1, 2, … ,𝑛, .
Where:
• 𝜇 is	a	constant	representing	the	underlying	mean	of	all	groups	taken	together	
(the	‘grand	mean’)
• 𝛼, is	a	constant	representing	the	difference	between	the	mean	of	the	𝑖./
group	and	the	‘grand	mean’
• 𝑒,1	represent	the	random	error	terms,	𝑒,1	~𝑁(0, 𝜎()

• An	observation	from	the	𝑖./ group	is	normally	distributed	with	mean	𝜇 + 𝛼, and	variance	𝜎(.



One-Way	ANOVA:	Assumptions
• There	are	k populations	of	interest	(k	>	2)
• The	samples	are	drawn	independently	from	the	underlying	populations
• Homoscedasticity: the	variances	of	the	k populations	are	equal

• Variance	of	the	outcome	does	not	depend	on	the	sample

• Normality:	the	outcomes	are	normally	distributed

• Any	assumption	violation	jeopardizes	the	method	validity!



One-Way	ANOVA:	Hypothesis	Testing
• The	One-Way	ANOVA	model	is	specified	as:

𝑦,1 = 𝜇 + 𝛼, + 𝑒,1	, 𝑖 = 1, 2, … , 𝑘, 𝑗 = 1, 2, … , 𝑛, 	(*)

• Let	n be	the	total	number	of	observations:	∑ 𝑛, = 𝑛.B
,C&

• Let	𝑦,D 	denote	the	mean	from	the	𝑖./ group.

• Let	𝑦E	denote	the	‘grand	mean’,	𝑦E =
∑ ∑ FGH
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.

• We	can	write:
𝑦,1 − 𝑦E	 =	(𝑦,1 − 𝑦,D )			+				(𝑦,D − 𝑦E)

Within	group	variability			+			Between	group	variability



One-Way	ANOVA:	Hypothesis	Testing
• We	can	partition	the	total	variability:

𝑦,1 − 𝑦E	 =	(𝑦,1 − 𝑦,D )			+				(𝑦,D − 𝑦E)
Within	group	variability			+			Between	group	variability

**Squaring	both	sides	of	the	equation	results	in:
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Total	Sum	of	Squares	(Total	SS)	=		Within	Sum	of	Square	(SS)	+	Between	Sum	of	Squares	(SS)

• Thus,	we	have	partitioned	the	total	variability	into	two	components.

** The	cross-product	is	equal	to	zero.



One-Way	ANOVA:	Hypothesis	Testing
• Short	computational	forms:

Total	SS	=	∑ ∑ 𝑦,1(
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Where:	
𝑦.. represents	the	sum	of	all	observations	across	all	groups,	the	‘grand	total’.
𝑛 represents	the	total	number	of	observations	over	all	groups.
𝑠,( represents	the	sample	variances	for	the	𝑖./ group.



One-Way	ANOVA:	Hypothesis	Testing
The	Mean	Squares	can	be	calculated	from	the	Sum	of	Squares	as:

Between	Mean	Square	(MS)	=	Between	SS	/	(k-1)
Within	Mean	Square	(MS)	=	Within	SS	/	(n-k)

• Note	that	the	Within	Mean	SS	‘pools	the	sample	variances’	of	the	k groups:
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• Note	that	the	sum	of	Between	and	Within	MS	is	not	equal to	the	Total	MS.



One-Way	ANOVA:	Summary	Table
ANOVA	results	are	usually	summarized	in	the	following	table:

Source Sum	of	Square	(SS) Degrees of	
freedom	(df)

Mean	Sum	of	
Square

F-Statistics

Between Between	SS k-1 Between	SS/(k-1) F	=	Between	SS/(k−1)	Within	SS/(n−k)	

Within Within SS n-k Within	SS/(n-k)

Total Between	SS	+	Within SS n-1



One-Way	ANOVA:	Overall	F-test
Testing	the	hypotheses:

𝐻":	𝜇& = 𝜇( = 	… = 𝜇*
																							𝐻&: at	least	two	means	are	not	equal

is	equivalent	to:
																									𝐻": 	𝛼& = 𝛼( = 	… = 𝛼* = 0 (from	*)

															𝐻&: at	least	two	α’s	are	not	equal
• Compute	the	test	statistic:

F	=	Between	SS/(k−1)	Within	SS/(n−k)	 ~𝐹*Q&,BQ*	distribution	under	𝐻"
• Reject	𝐻":	if	𝐹 > 𝐹*Q&,BQ*,&QU
• Fail	to	reject	𝐻":	if 𝐹 ≤ 𝐹*Q&,BQ*,&QU
• P-value:	area	to	the	right:	𝑃(𝐹*Q&,BQ* > 𝐹).



One-Way	ANOVA:	Example
A	study	is	examining	the	effect	of	glucose	on	insulin	release.	Specimens	of	
pancreatic	tissue	from	experimental	animals	were	treated	with	five	different	
stimulants.	Later,	the	amounts	of	insulin	released	were	recorded.

Let	𝑦,1	denote	the	amount	of	insulin	released	from	the	𝑗./ mouse	in	the	𝑖./
experimental	group	(𝑖 = 1, 2, … , 5; 	𝑗 = 1, 2, … , 𝑛,).

Question:	are	there	any	significant	differences	among	the	population	means	for	
the	five	stimulants?



One-Way	ANOVA:	Example
Responses	(𝒚𝒊𝒋)	by	Stimulant	Group

Mouse 1 2 3 4 5

1 1.53 3.15 3.89 8.18 5.86

2 1.61 3.96 3.68 5.64 5.46

3 3.75 3.59 5.70 7.36 5.69

4 2.89 1.89 5.62 5.33 6.49

5 3.26 1.45 5.79 8.82 7.81

6 1.56 5.33 5.26 9.03

7 7.10 7.49

8 8.98

N𝒚𝒊𝒋

𝒏𝒊

𝒋C𝟏

13.04 15.60 30.01 47.69 56.81

N𝒚𝒊𝒋𝟐
𝒏𝒊

𝒋C𝟏

37.98 46.60 154.68 337.17 417.92

𝒚𝒊D 2.61 2.60 5.01 6.81 7.10

𝒔𝒊𝟐 0.99 1.21 0.92 2.04 2.02



One-Way	ANOVA:	Example
Calculate	the	Sum	of	Squares:

Total	SS	=∑ ∑ 𝑦,1(
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Within	SS	=	Total	SS		- Between	SS		=	162.54	– 121.19	=	41.35

F	=	Between	SS/(k−1)	Within	SS/(n−k)	 =
&(&.&j/h
h&.ef/(i = 19.78 >	𝐹h,(i,".jf = 2.73.

At	0.05	significance	level,	we	reject	the	null	hypothesis	and	conclude	that	at	least	two	of	
mean	insulins	from	the	five	stimulant	groups	are	different.
Next	question:	Which	two	means	are	different?



One-Way	ANOVA:	Multiple	Comparisons
• The	overall	F-test	can	only	indicate	a	significant	difference	between	the	group	means	(if	
the	case),	but	does	not	tell	which	means	are	different.

• Problem:	multiple	looks/comparisons	can	increase	the	type	I	error,	i.e.,	a	higher	
probability	of	rejecting	the	null	hypothesis	in	error
• In	our	insulin	example,	there	are	10	possible	pairwise	comparisons.	If	you	make	10	comparisons	
(t-tests),	each	at	0.05	significance	level,	then	the	probability	of	rejecting	at	least	1	out	of	10	is	
approximately	0.40	(why?)

• We	need	to	control	and	preserve	the	overall	(family-wise)	error	rate	at	the	pre-
specified	alpha	level:	

FWER	≤ 1 − (1 − 𝛼).o.pq	Brstuv	ow	xosypv,RoBR

In	our	example:	FWER	≤ 1 − 1 − 0.05 &" = 0.401



Adjusting	for	Multiple	Comparisons
• We	need	to	modify	the	critical	regions	so	that	we	can	control	the	probability	of	
rejecting	when	there	are	no	real	differences.

• Bonferroni	adjustment:	𝛼∗ = U
*
(

Reject	𝐻":	if	 𝑡 > 𝑡BQ*,&QU∗/(
Fail	to	reject	𝐻":	if	|𝑡| ≤ 𝑡BQ*,&QU∗/(

• Bonferroni	is	the	most	conservative	method,	i.e.,	the	most	stringent	in	declaring	
significance	(thus,	less	powerful).



Bonferroni	adjustment	for	Insulin	Example
• In	our	insulin	example:	𝛼∗=0.05/10=0.005	and	we	would	reject	if:	 𝑡 > 𝑡(i,".jjif = 3.06.

T-test	statistics	for	all	10	pairwise	comparisons

Means (1) (2) (3) (4)
(2) -0.011 - - -
(3) 3.194* 3.361* - -
(4) 5.802* 6.118* 2.630 -
(5) 6.368* 6.734* 3.140* 0.450

*	Indicates statistical	significance	after	Bonferroni	adjustment	for	an	overall	type	I	error	set	at	
0.05.



Other	Multiple	Comparisons	Adjustments
• Tukey’s	method	– controls	for	all	pairwise	comparisons	and	it	is	less	conservative	
than	Bonferroni.

• Scheffe’s method	– allows	analysts	to	perform	any	comparison	they	might	think	
of,	not	just	pairwise	comparisons.

• Dunnett’s method	– mainly	focuses	on	comparisons	with	a	pre-defined	control	
arm.

• Sequential	procedures:	Benjamini-Hochberg’s	method	that	controls	for	the	false-
discovery	rate	(FDR).
• FWER	guards	against	any	‘false	positives’
• FDR	is	designed	to	control	the	proportions	of	’false-positives’	among	the	set	of	rejected	
hypotheses	(allows	for	‘some’	false	positives)



Readings

Rosner,	Fundamentals	of	Biostatistics,	Chapter	12

• Sections:	12.1	– 12.4

• Read	section	about	Linear	Contrasts	(also	in	Recitation	4)

• Two-Way	(Multi-Way)	ANOVA	and	ANCOVA	will	be	covered	as	part	
of	linear	regression


